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Abstract

N-body simulations of nonresonant, tightly packed planetary systems have found that their survival time (i.e., time
to first close encounter) grows exponentially with their interplanetary spacing and planetary masses. Although this
result has important consequences for the assembly of planetary systems by giant collisions and their long-term
evolution, this underlying exponential dependence is not understood from first principles, and previous attempts
based on orbital diffusion have only yielded power-law scalings. We propose a different picture, where large
deviations of the system from its initial conditions is due to a few slowly developing high-order resonances. Thus,
we show that the survival time of the system T can be estimated using a heuristic motivated by Nekhoroshev’s
theorem, and obtain a formula for systems away from overlapping two-body mean-motion resonances as

m=
D

DT P c cexpa

a

a

a1 2
1 4( ), where P is the average Keplerian period, a is the average semimajor axis, Δa=a

is the difference between the semimajor axes of neighboring planets, μ is the planet-to-star mass ratio, and c1 and
c2 are dimensionless constants. We show that this formula is in good agreement with numerical N-body
experiments for c1=5×10−4 and c2=8.

Unified Astronomy Thesaurus concepts: Exoplanet dynamics (490); Few-body systems (531); Planetary system
formation (1257)

1. Introduction

According to planet formation theory, small rocky cores are
formed in the protoplanetary disk. These cores, as shown in
computer simulations, are expected to be of similar mass and at
a distance of a few Hill radii from one another (Kokubo &
Ida 1998). After the disk evaporates, these rocky cores begin to
collide and merge, eventually forming terrestrial planets
(Agnor et al. 1999; Chambers 2001). The rate at which these
collisions occur is of tremendous importance to planet
formation and the survivability of planetary systems like our
own. Collisions play a role, for example, in the Nice model
(Gomes et al. 2005; Morbidelli et al. 2005; Tsiganis et al.
2005), although their eccentricities are excited by the gas
giants, whereas in this work we consider planetary systems
with just terrestrial planets.

The stability of planetary systems in general, and of our solar
system in particular, is a long-standing problem in physics and
mathematics (Laskar 1989; Sussman & Wisdom 1992; Murray
& Holman 1999), which has been studied extensively, both
analytically (Robutel 1995; Féjoz 2004; Celletti &
Chierchia 2007; Locatelli & Giorgilli 2007; Efthymiopou-
los 2008; Giorgilli et al. 2009, 2017; Sansottera et al. 2010) and
numerically (Laskar & Laskar 1994; Hayes 2007; Batygin &
Laughlin 2008; Laskar & Gastineau 2009). The chaotic
evolution of such systems makes their dynamics difficult to
analyze. To illustrate this issue, we have plotted the time
evolution of the eccentricity and semimajor axis of one planet
in a tightly packed four-planet system in Figure 1. The planets
end up colliding, but rather than increasing gradually, the
eccentricity and semimajor axis seem to be bounded for about
108 orbits, and then shoot up at a seemingly arbitrary time.

The major analytic progress in this field is the celebrated
Kolmogorov–Arnol’d-Moser (KAM) theory (Kolmo-
gorov 1954; Möser 1962; Arnol’d 1963; Pöschel 2009). The

main result of this theory is that if a perturbation to a
nondegenerate and nonresonant Hamiltonian system is small
enough, the motion lies on an invariant torus with fixed
frequencies. One of the supplements to the KAM theory is the
Nekhoroshev theory (Nekhoroshev 1977, 1979; Pöschel 1993;
Niederman 2012), which states that even if a system does not
satisfy the condition for KAM stability, the deviations from the
unperturbed solution remain bounded for exponentially long
times.
In its original formulation, Nekhoroshev’s estimates apply to

nondegenerate systems, whereas the planetary problem is
degenerate. Various authors have shown that a canonical
change of coordinates can circumvent the degeneracy (Nieder-
man 1996; Guzzo 2007), and applied the Nekhoroshev theory
to study the long-term orbital stability of bodies in our solar
system (Cellett & Ferrara 1996; Morbidelli & Guzzo 1997).
Pavlović and Guzzo (2008) also showed that the Nekhoroshev
theorem is applicable to the Koronis and Veritas asteroid
families. We use a similar method to study the long-term
evolution of planetary systems, but focused on compact extra-
solar systems for which the relative separation is comparable to
their Hill radius. Such compact configurations are expected for
rocky cores soon after the protoplanetary disk evaporates, while
some systems might retain this compactness for billions of
years as it has been revealed by the Kepler sample (Pu &
Wu 2015).
The stability of tight multiplanet systems with more than two

planets has been explored primarily using numerical N-body
simulations (e.g., Chambers et al. 1996; Yoshinaga et al. 1999;
Zhou et al. 2007; Smith & Lissauer 2009; Funk et al. 2010;
Chatterjee & Ford 2014). These simulations reveal that the
survival time of the system—the time until the first collision
happens—increases very steeply (exponentially) with the initial
separation between the orbits (see Pu & Wu 2015, for a
summary of previous numerical results). This behavior, which

The Astrophysical Journal Letters, 892:L11 (6pp), 2020 March 20 https://doi.org/10.3847/2041-8213/ab75dc
© 2020. The American Astronomical Society. All rights reserved.

1

https://orcid.org/0000-0002-5230-5514
https://orcid.org/0000-0002-5230-5514
https://orcid.org/0000-0002-5230-5514
https://orcid.org/0000-0003-0412-9314
https://orcid.org/0000-0003-0412-9314
https://orcid.org/0000-0003-0412-9314
mailto:almog.yalin@gmail.com
http://astrothesaurus.org/uat/490
http://astrothesaurus.org/uat/531
http://astrothesaurus.org/uat/1257
http://astrothesaurus.org/uat/1257
https://doi.org/10.3847/2041-8213/ab75dc
https://crossmark.crossref.org/dialog/?doi=10.3847/2041-8213/ab75dc&domain=pdf&date_stamp=2020-03-24
https://crossmark.crossref.org/dialog/?doi=10.3847/2041-8213/ab75dc&domain=pdf&date_stamp=2020-03-24


has been reproduced in multiple independent studies, is not
understood theoretically (see attempts by Chambers et al. 1996;
Zhou et al. 2007; Quillen 2011).

In this Letter we propose that this survival time can be
estimated using Nekhoroshev’s theory. For simplicity, we
make a number of assumptions. We assume that all the planets
are of equal mass and move in coplanar, circular, prograde (i.e.,
all planets orbit in the same direction), regularly spaced orbits.
We also assume that the system does not start out in any first-
order two-body resonance (Deck et al. 2012).

The plan of the Letter is as follows. In Section 2 we present
Nekhoroshev’s theory and use it to obtain a survival time for
tight planetary systems. In Section 3 we compare our results to
numerical N-body simulations. Finally, in Section 4 we discuss
our results.

2. Mathematical Model

2.1. Nekhoroshev Estimates

We consider a nearly integrable Hamiltonian system of the
form

j je= +I I IH H H, , 10 1( ) ( ) ( ) ( )

with N degrees of freedom, where ε = 1 measures the strength
of the perturbation, and I andj are action-angle variables. We
note that when ε=0 then all I are constant and all angles
increase linearly with time. If IH0 ( ) satisfies certain reasonable
conditions on its convexity, and if ε is small enough, then it can
be shown that the system remains stable for exponentially long
times. Mathematically, it is stated in the following way: the
deviation from the unperturbed solution is bounded from above

by some power law of the perturbation strength,

e- <I It C0 , 21 N
1

2∣ ( ) ( )∣ ( )

for a duration of time that increases exponentially as the
strength of the perturbation decreases,

e<t C Cexp , 33 2 N
1

2[ ] ( )

where C1 and C2 are constants that do not depend on ε or time,
and C3 can, at most, be polynomial in ε. This constraint is
known as the Nekhoroshev estimate. We emphasize that this
condition guarantees that the system remains bounded within a
certain time period, but afterwards the system can either remain
stable or deviate further from the unperturbed solution. We
note that since these are upper bounds, different authors arrive
at different power-law indices of ε, depending on their
assumptions about the behavior of the Hamiltonian
(Guzzo 2007).
A complete proof of this constraint is given in Lochak &

Neishtadt (1992), and we will not repeat it here. Instead, we
only review some of the key ideas behind the proof. First, we
express the perturbing function as a Fourier transform in the
angle variables

åj j=I I kH h i, exp , 4k
k

1( ) ( ) ( · ) ( )

where k represents a list of integers. Expanding Hamilton’s
equation for the momenta to the first order in the small
parameter ε we obtain

å je= - »jI I k kH i h iexp , 5
k

k1 0 0( ) ( · ) ( )

Figure 1. Time evolution of the relative changes in semimajor axes and eccentricity squared for the third planet in a four-planet system that becomes unstable after
∼2×108 orbits. These variables are proportional to the Poincaré’s actions L - L L -t a t a a20 0 0 0∣ ( ) ∣ ∣ ( ) ∣ ( ) and G - G Lt e 20 0

2∣ ( ) ∣  . The dots corresponds to
the mean and maximum values using a time resolution of 100 orbits and a moving window of 104 orbits to smooth out the high-frequency oscillations. We observe
that for the majority of time the action variables are bounded, until a sharp rise occurs. In contrast, if the system were to evolve by diffusion, we would expect to see a
steady, power-law increase of the action variables with time. In this example, we set the mass ratio between the planets and the star to be μ=10−7, with an equal
spacing of - =+a a a 0.046i 1 i 1( ) (nearly 10 mutual Hill radii) and eccentricities to ei=10−7, chosen such that no pair of first-order resonances overlap according to
the widths calculated by Deck et al. (2012). The true anomalies and longitudes of periapse are set to {0,−1.4, 1,−1.4} and {0.9, 3.7, 3.3, 3.7} for the planets {1, 2, 3,
4}. The integration is carried out using the WHfast package (Rein & Tamayo 2015) in Rebound (Rein & Liu 2012) with ;50 timesteps per orbit.

2

The Astrophysical Journal Letters, 892:L11 (6pp), 2020 March 20 Yalinewich & Petrovich



where I0 are constants andj w j= +t i0 ,ji are constants, and
w =  =HI I I0 0∣ . Time integration yields

å
j

w
e=I k

k

k
h I

iexp
. 6

k
k1 0

0( )
( · )

·
( )

We immediately notice a problem with this approach. For
arbitrarily large values of the integers k, the product wk · can
be brought arbitrarily close to zero. In fact, a number theory
result, called Dirichlet’s approximation theorem, states that the
convergence is better than -k n1∣ ∣ , where n is the number of
integers and = åk kl l∣ ∣ ∣ ∣ is the sum of their magnitudes. Terms
for which w =k 0· are called resonant terms. Nonresonant
terms oscillate in time, while resonant terms grow linearly
with time.

On the other hand, the Paley–Wiener theorem tells us that at
large indices k, the Fourier coefficients must decline at least
exponentially. Therefore, resonant terms eventually grow and
invalidate the perturbative solution, but they take at least an
exponentially long time to grow. The remaining challenge is to
estimate the index limit k∣ ∣.

2.2. Adaptation to Tightly Packed Planetary Systems

The physical system we are interested in is a small number
of planets of the same mass m around a star of mass M?m.
The average distance between the star and the planet is a and
the initial separation between neighboring planets’ semimajor
axes is Δa=a. All planets are assumed to initially move on
circular, coplanar orbits (i.e., both positions and velocities are
coplanar, so the motion is restricted to a single plane). We want
to estimate the average time it takes for the first planet–planet
collision to occur, which it translates into a condition on the
growth of the action I (either semimajor axes or eccentricities).

In order to illustrate the evolution of such systems, we show
an example in Figure 1 for a four-planet system. This example
shows that the evolution actions remain bounded for a long
time and after ∼108 orbits, they break loose and diffuse to the
absorbing boundaries (i.e., orbit crossing).

Hereafter, we will use Poincaré variables, where the action-
angle pairs for a given planet are lL m GMa ,{ } and

vG -m GMa e 2,2{ } with λ and ϖ as the mean longitude
and the longitude of pericenter, respectively (Murray &
Dermott 1999).

2.2.1. Scaling with Spacing Δa/a

From the discussion in the previous section, we know that
this timescale will depend on the exponential decline of the
Fourier coefficients. Indeed, the gravitational binding energy
between two planets is given by

å
q

qµ
+ -

µH
r r r r

b
r

r
j

1

2 cos
cos , 7

j

j
1

1
2

2
2

1 2

2

1
1
2

⎛
⎝⎜

⎞
⎠⎟ ( ) ( )

where r1,2 are distances of the planets from the host star, θ is
the angle between the lines connecting the planets to the star,
and

òa
p

q q

a q a
=

- +

p
b

j d1 cos

1 2 cos
8j

0

2

2
1
2

( ) ( ) ( )

are the Laplace coefficients, which decline exponentially with
the index a aµ - -b jexp 1j

1
2

( ) ( ( )∣ ∣) (Quillen 2011). Thus,

for nearly circular orbits

a µ
D

-
D

b
a

a

a

a
j

1

2
ln exp 9j

1
2

⎡
⎣⎢

⎤
⎦⎥( ) ∣ ∣ ( )

(though we will neglect the logarithmic term, as it only
introduces a small correction), and from Equation (6) we know
that the deviation from the unperturbed solution in the resonant
case to grows linearly with time roughly as

µ µ -
D

I It h t
a

a
jexp . 10j1 0

⎡
⎣⎢

⎤
⎦⎥∣ ∣ · ( ) · ∣ ∣ ( )

The system survives as long as the action variable does not
exceed some critical threshold <I I1 crit.∣ ∣ , and from
Equation (10) the survival time T scales as

µ
D

T
a

a
ln . 11( )

2.2.2. Scaling with the Mass Ratio μ=m/M

We now turn to calculate the dependence of the survival time
on the mass ratio. Unlike the dependence with the spacing, this
requires specifying the nature of the perturbations that lead to
the growth of the actions.
We shall start by assuming that the evolution of a single

planetary orbit is mainly determined by its two closest
neighbors (thus neglecting resonances with nonadjacent
bodies) so the relevant perturbative Hamiltonian involves the
gravitational interactions of only three planets. This choice is
justified by the fact that the strength of interactions, which is
proportional to the Laplace coefficients, decays exponentially
with interplanetary separation (Quillen 2011).
Away from overlapping two-body resonances, Quillen

(2011) showed that three-body resonances dominate the chaotic
dynamics of low-mass multiplanet system. To the first order in
the eccentricities, this Hamiltonian can be written as

l v l veL G L G L G= +H H H, , , , , , , , 120 1( ) ( ) ( ) ( )

where L = L L L, ,1 2 3( ), G = G G G, ,1 2 3( ), l l l l= , ,1 2 3( ),
v v v v= , ,1 2 3( ), and the small parameter is e = m M 2( ) ,
since three-body resonances do not occur in the linear
expansion in the mass ratio. After canonical transformations,
this Hamiltonian has four degrees of freedom (since two were
eliminated by the introduction of resonant angles) and can be
expressed as

q qeQ Q Q= +H H H, , 130 1( ) ( ) ( ) ( )

where Q is a function of the Poincaré actions and q is a linear
combination of l and v. In particular, including the modes
that are zeroth and first order in the eccentricities, one possible
combination is (Quillen 2011)

q l l l v
q l l l v
q l l l v
q l l l v

= + - + + -
= + - + + -
= - + - + -
= - + - + -

p p q q
p p q q

p p q q
p p q q

1 ,
1 ,

1 ,
1 . 14

1 1 2 3 1

2 1 2 3 2

3 1 2 3 2

4 1 2 3 3

( ) ( )
( ) ( )

( )
( ) ( )

Thus, since this Hamiltonian involves N=4 degrees of
freedom, Nekhoroshev’s theorem predicts the survival
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timescales as

eµ µ-T
M

m
ln . 15N1 2

1 4
⎜ ⎟⎛
⎝

⎞
⎠ ( )( )

Our argument to get scaling with the mass assumes three-
body interactions. Alternatively, there might be other set of
perturbations involving two-body interactions that can desta-
bilize the system. Since two-body interactions are linear in the
masses, ò=m/M, a two-degree-of-freedom model would
reproduce the same scaling. We remark, however, that our
analysis excludes overlapping two-body resonances and these,
as clearly shown in simulations by Obertas et al. (2017) with
uniform spacing,4 produce wild oscillations in the survival
times. In turn, we suspect that the weaker, but much denser
(abundant set of angles above that can resonate), three-body
resonances would map into a very smooth distribution of T
with mutual spacing (high density in Δa/a) as observed in
simulations with unequal spacing (e.g., Chambers et al. 1996;
Faber & Quillen 2007).

In summary, our estimates using three-body interactions and
the Nekhoroshev’s theorem results in a scaling with the mass as

µT M mln 1 4( ) . This scaling differs from the commonly used
Hill scaling (i.e., µT M mln 1 3( ) ). We note, however, that
previous simulations reported better fits with M m 1 4( ) than
that of the Hill’s scaling (e.g.,Figure 4 of Chambers et al.
1996). A more in-depth study on the mass scaling can better
test our results.

2.3. The Prefactor

The remaining component for the survival time is the
prefactor, which contains a timescale. In this context, the
relevant timescale is the time between conjunctions of
neighboring planets, or the synodic time. Both planets orbit

the star at roughly the Keplerian time »tk
a

GM

3

, and the
relative difference in periods is proportional to Δa/a, so the

synodic time is given by » »
D D

t ts
a

a k
a

a

a

GM

3

.
Finally we are able to write a complete expression for the

survival time of tight planetary systems,

=
D

D
T c

a

a

a

GM
c

a

a

M

m
exp , 161

3

2

1 4
⎜ ⎟

⎛
⎝⎜

⎛
⎝

⎞
⎠

⎞
⎠⎟ ( )

where, again, c1 and c2 are numerical constants that depend
neither on Δa/a nor m/M, and cannot be determined from
scaling arguments. In the next section we compare this formula
to numerical results, and using those results we are able to
calibrate the numerical coefficients c1 and c2.

3. Comparison to Simulations

In this section we compare our theoretical prediction in
Equation (16) to numerical N-body simulations of tight
planetary systems. The results of most simulations done in
the past are summarized in Pu & Wu (2015), but here we
simply highlight specific works that explore relevant parts for
our discussion.

The first set of simulations we consider was performed in
Zhou et al. (2007). They simulated nine planets, spaced with a

constant Hill parameter of » -
+

+

+
K 2 a a

a a

M

m

1 3
i i

i i

1

1
( ) . They found a

very steep dependence of the survival time on the Hill
parameter. They fit this dependence to a power law in the
Hill parameter, and infer »d T d Kln ln 20. They also varied
the mass ratio, μ=m/M, and find m = -d T dln ln 0.27.
They developed an analytic theory for diffusion in eccentricity
that reproduces the dependence on the mass ratio μ, but whose
dependence on the Hill parameter is too shallow (K5 instead of
K20). A discussion of this theory and its shortcomings is given
in the Appendix.
A similar suite of simulations was performed by Rice et al.

(2018). They explored a wider range of Hill parameters than
Zhou et al. (2007), and they fit the numerical result to an
exponential relation between the survival time and Hill
parameter. A similar fit to an exponential was obtained by
Petrovich (2015) for the case of two eccentric planets. From the
results of Rice et al. (2018) we are able to constrain the
remaining free parameters c1 and c2 to obtain a final form for
the survival time of tight planetary systems,

» ´
D

D-T P
a

a

a

a

M

m
5 10 exp 8 , 174

1 4
⎜ ⎟⎜ ⎟ ⎜ ⎟⎛

⎝
⎞
⎠

⎛
⎝⎜

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎞
⎠⎟· ( )

or more commonly expressed as

» - +
D

+
D

T P
a

a

a

a

M

m
log 4.4 log 3.5 . 18

1 4
⎜ ⎟⎜ ⎟ ⎜ ⎟⎛

⎝
⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠( ) ( )

This form is similar to the expression found by Faber & Quillen
(2007), which has a coefficient of 3.7 accompanying the term
Da

a

M

m

1 4( ) instead of 3.5, and a logarithmic dependence on the
mass ratio, not the spacing.
A comparison between the numerical results of Rice et al.

(2018) and Equation (17) can be seen in Figure 2. We note that
Rice et al. (2018) argue that the argument in the exponent

should be proportional to the Hill parameter Da

a

M

m

1 3( ) , unlike
our results. However, we note that some numerical experiments

agree well with the Da

a

M

m

1 4( ) scaling (Chambers 2001; Faber
& Quillen 2007). Similarly, this scaling is born out from
theoretical works estimating the regions for the onset of chaos
either from the three-body resonance overlap (Quillen 2011) or
the two-body resonance overlap for eccentric planets (Hadden
& Lithwick 2018). A more exhaustive study on the mass
scaling of instability times will shed light on this issue.

Figure 2. Comparison between the numerical results of Rice et al. (2018) for
the relation between the survival time and the interplanetary spacing and a fit to
these results using our analytical functional form in Equation (16) (i.e.,
determining the two constants c1 and c2). The best-fit results in Equation (17)
agree fairly well with the numerical experiments.

4 Uniform spacing leads to a nearly uniform period ratio distribution,
enhancing the appearance of the overlapping two-body resonances.
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Finally, Obertas et al. (2017) ran another suite of simulations
with a much higher resolution in the interplanetary spacing
compared to all previous works. They found a general trend
consistent with the previous studies, and also large and rapid
variations in the survival time as a function of Δa/a. They
show that the locations of these oscillations coincide with two-
body mean-motion resonances. From the discussion in
Section 2.1 we can understand why our model fails for systems
close to a resonance. In such cases, the Fourier series for the
perturbing potential must be truncated at a indices smaller than

eµ -k N1 2∣ ∣ ( ). We note that a resonance is a double-edged
sword, in the sense that it can rapidly change the parameters of
the system, but only within a lower dimensional subspace of
parameter space. If a collision is possible within this subspace,
then it can happen on timescales much shorter than
Nekhorosev’s estimates. On the other hand, if a collision is
not possible within this parameter space, then a resonance can
prolong the lifetime of the system considerably. Both of these
effects can be seen in the results of Obertas et al. (2017).

4. Discussion

In this work we study the survival time (time to first close
encounter) of tight planetary systems (mutual spacing 10
mutual Hill radii). We use Nekhoroshev’s stability limit to
derive an analytic formula for the survival time as a function of
interplanetary spacing and planet-to-star mass ratio. This
formula is defined up to two dimensionless numbers and it
reproduces the exponential scaling with interplanetary spacing
and a mass ratio observed by several numerical simulations. By
calibrating these constants we arrive at a complete expression
for the survival time of tight planetary systems (Equation 17).

We note that most previous attempts to explain the steep
dependence of the survival time on the separation focused on
estimating the chaotic diffusion coefficients, which only led to
polynomial growth of the survival time. To our knowledge, this
is the first work attempting to explain the numerical results with
an exponential, although the idea has been suggested in
previous works (Zhou et al. 2007; Quillen 2011). In our
picture, a high-order resonant mode grows linearly with time,
but has a tiny prefactor, so it takes a long time for it to exceed
low-order nonresonant modes.

We note that while this work provides a useful tool for
estimating the survival time for tight planetary systems, our
arguments are heuristic and do not reveal the nature of the
chaotic interactions leading to instability. We suggest that
three-body resonances are suspect, but have not explored the
role of two-body resonances. Based on recent numerical
simulations showing large deviations from our results in the
vicinity of overlapping mean-motion resonances, it is also
possible that these resonant systems follow a different scaling
law, possibly linked to rapid diffusion. Finally, in this work we
have assumed a highly idealized system in which all planets
have equal masses and uniformly spaced in coplanar orbits (
i.e., both positions and velocities are coplanar, so the motion is
restricted to a single plane). All these effects merit further
exploration.

We would like to thank Norm Murray and Alysa Obertas for
the useful feedback. A.Y. is supported by the Vincent and
Beatrice Tremaine Fellowship. C.P. acknowledges support
from the Gruber Foundation Fellowship and Jeffrey L. Bishop

Fellowship. This work made use of the matplotlib python
package (Hunter 2007).

Appendix
Diffusion Timescale of the Eccentricity Vector:

Understanding the Power-law Scaling Using the Impulse
Approximation

In this section we discuss the analytic theory for diffusion in
eccentricity developed in Zhou et al. (2007). The original
derivation relies on a Hamiltonian formalism, but we can
reproduce the results using the impulse approximation. In this
approximation, we neglect all interaction between the planets
until conjunction, and then assume all exchanges of energy and
momentum are instantaneous. Again, we assume initially
coplanar planets on circular orbits. The mass of the planets is
m, the mass of the star is M, the average semimajor axis is a,
and the separation between the planets is Δa=a.
Both planets move at roughly the Keplerian velocity
»v GM ak , and the relative velocity between them is

D » Dvk
a

a

GM

a
. At conjunction, the acceleration between the

two planets due to mutual attraction is G m/Δa2. The duration
of the interaction is roughly given by the time during which the
distance between the two planets is Δa, namely

D » D D » »t a v tk k
a

GM

3

. Hence, due to the interaction,
the planets receive a kick velocity normal to the direction of
velocity difference

d »
D

v̂
Gm

a

a

GM
. 19

2

3
( )

In the case of a perfectly circular orbit, this kick velocity does
not change the angular momentum, since the velocity is parallel
to the radial direction. If, however, the orbit has an eccentricity
e, and conjunction happens at some random angle, then the
angle between the kick velocity and the radial direction would
be proportional to the eccentricity e, and the kick velocity
would have a small component in the tangential direction

d d» »
D

^v e v e
Gm

a

a

GM
. 20t 2

3
( )

Depending on the true anomalies at conjunction, this kick
could either be prograde or retrograde. The change in angular
momentum is given by ΔL≈aδvt, and the change in
eccentricity is

d
d

d d» »  »
D

e
L

L
e v v e

m

M

a

a
21t k

2
2

2
( )

where »L GMa is the orbital angular momentum per unit
mass. For the orbits to cross, the eccentricity has to grow to
ef≈Δa/a. Since we assume a random walk, the number of
conjunction needed is de ef

2( ) . Since the time between
conjunctions is ts≈tk a/Δa, the survival time according to
this model is

d
» »

D
T t

e

e
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GM

a

a

M

m
. 22s
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⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
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⎞
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Thus we reproduce the expression for survival time obtained by
Zhou et al. (2007). This expression does not reproduce the
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observed exponential dependence of T with the spacing and the
mass ratio.

The problem with this model is that it assumes a random
angle between planets at conjunction, whereas the planets
quickly align their elliptical orbits. To see why this is the case,
let us use the impulse approximation to calculate how the
direction of periapse changes. We already calculate the kick
velocity in the radial direction in Equation (19). This
component is always in the same direction, and does not
depend on the eccentricity. We recall that the eccentricity
vector is given by = -´e rv L

GM
ˆ, where v is the orbital velocity

and L is the angular momentum. The change in this vector is
given by

d q= 
D

e
m

M

a

a
23

2

2
ˆ ( )

where q̂ represents the tangential direction. In this case the
length of the eccentricity vector does not change, only its
direction. We note that since the inferior and superior planets
get opposite radial kick velocities but have roughly the same
angular momentum vector, then the changes in the eccentricity
vectors have opposite signs. If both planets had the same
eccentricity vector, this would cause them to rotate in opposite
ways. On the other hand, if both planets had equal but opposite
eccentricity vectors, then this would cause both to rotate in the
same way, thus preserving their anti-alignment. This anti-
alignment can be maintained even for a large mass ratio
between the planets, since in this case the more massive planet
would have a much smaller eccentricity, which can be easily
rotated by the smaller planet.
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