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ABSTRACT 
 

Pectate lyase represents an important member of pectinase group of enzymes responsible for the 
pathogenesis and softening of plant tissues. It also has role in fruit juice clarification and in retting 
of natural fibers. The biochemical characterization of pectate lyases from diverse microbial sources 
and plants along with an insight to the protein structure has been dealt earlier but there is a lack of 
exclusive review on the molecular biology of pectate lyases. This review tries to fill the gap by 
highlighting the various aspects of molecular biology of microbial pectate lyases especially the 
cloning and expression of pectate lyase genes from diverse sources attempted so far. The topics 
covered in this review are a brief description about enzymes associated with degradation of pectin, 
its classification, applications, updated information about the biochemical characterization of 
microbial pectate lyases and cloning and expression of microbial pectate lyase genes. 
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1. INTRODUCTION 
 
Pectate lyases (E.C 4.2.2.2) also known as 
pectate transeliminases, depolymerise the pectic 
acid polymer by β-transelimination mechanism. 
Pectic acid is de-esterified pectin occurring in the 
middle lamella of plant cells.Pectic substances 
are basically heteropolymeric in nature and form 
the major component of the carbohydrate that is 
present in the cell wall. These are found as a thin 
layer of adhesive extracellular material between 
primary cell wall and adjacent young plant cells. 
 
At the onset of pathogenesis cell wall 
carbohydrates are first degraded and an array of 
enzymes are released facilitating the growth and 
development of the pathogen [1]. Pectinases are 
the group of enzymes that degrade the pectic 
substances in different manner depending on the 
polymer and accordingly specific name is 
designated on the basis of substrate and mode 
of action namely polygalacturonases, pectin 
lyases,pectate lyases,pectin esterases. These 
enzymes are biotechnologically important 
industrial enzymes and are produced by a 
number of microbial sources such as bacteria, 
yeast, fungi and actinomycetes [2]. 
 
Microbial pectinases have been reviewed several 
times in light of their industrial applications [3-6]. 
Review of literature indicates that a lot of 
attention has been paid to microbial  
polygalacturonases  as compared to other 
members of pectinases. A review solely devoted 
to microbial pectin lyase was reported few years 
back [7]. Marin-Rodriguez et al. [8] have reported 
a short review on plant pectate lyases regarding 
cell wall degradation ad fruit softening.Areview of 
microbial pectate lyases describing their role             
in plant pathogenesis, their phylogenetic 
relationship and biochemical studies like 
isozymes,structure,reaction echanism,purification 
and properties have been reported [9]. 
 
The molecular biology tools provide an 
opportunity to clone required genes coding for 
industrially important enzyme and further subject 
it to over expression in suitable host for 
enhanced production.The availability of genome 
sequence information of various microbes known 
to be a potent source of enzymes further reveals 
the distribution of putative genes coding for 
respective enzymes which can be fished out 
using PCR technology. 
 
This review is an attempt to provide 
comprehensive information about the gene 

cloning and expression of microbial pectate 
lyases. 
 

2. ENZYMATIC DEGRADATION OF 
PECTIN 

 

Pectin is structurally one of the most complex 
families of polysaccharides constituting 35% of 
primary walls in dicots and non-graminaceous 
monocots, 2–10% of grass and up to 5% of walls 
in woody tissue [10]. It is mostly found in walls of 
cells surrounding soft parts of the plant, growing 
and dividing cells, middle lamella and corner of 
cells [11]. Pectin is ubiquitously observed in cell 
wall of all higher plants, gymnosperms, 
pteridophytes, bryophytes and chara, a 
charophycean alga [12]. It plays a significant role 
in both primary and secondary wall structure and 
function [13]. Pectin biosynthesis, plant wall 
biosynthesis and regulation of cell wall synthesis 
[14] have been extensively reviewed over the 
years.  
 
Pectin is reported to have diverse roles in plants 
such as growth, development, morphogenesis, 
defence, cell–cell adhesion, wall structure, 
signalling, cell expansion, wall porosity, binding 
of ions, growth factor enzymes, pollen tube 
growth, seed hydration, leaf abscission and fruit 
development [10,15]. Pectin finds application in 
food and cosmetic industry where it is often used 
as a gelling and stabilizing agent.It has multiple 
positive effects on human health including 
lowering cholesterol and serum glucose levels, 
reducing cancer and stimulating the immune 
response [16,17]. Pectin is also used in the 
production of a variety of specialty products 
including edible and biodegradable films, 
adhesives, paper substitutes, foams and 
plasticizers, surface modifiers for medical 
devices, materials for biomedical implantation 
and for drug delivery [11,18]. Its role in biomass 
yield and processing for biofuels has recently 
been reviewed [19].  
 
Pectinases are a complex group of enzymes that 
degrade various pectic substances (pectin) 
present in the middle lamella of plant cell wall. 
These have been classified according to                   
their mode of action and substrates they prefer 
viz. pectinesterases [PE, E.C.3.1.1.11]; 
polygalacturonases [PG, E.C. 3.2.1.15]; pectate 
lyases [PL, E.C. 4.2.2.2] and pectin lyases [PNL, 
E.C. 4.2.2.10]. Mode of action of important 
pectinases is shown in Fig. 1. They find immense 
application in clarification of fruit juices, retting of 
natural fibers, treatment of pectic waste 
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Fig. 1. Schematic representation for mode of action of pectinases (A) R=H for PG 
(polygalacturonases EC- 3.2.1.15) and CH3 for PMG (polymethylgalacturonases); (B) PE 
(pectinesterase EC- 3.1.1.11); (C) R= H for PL (pectate lyase EC-4.2.2.9) and CH3 for PNL 

(pectin lyase EC-4.2.2.10). The arrow indicates the place where pectinases react with the pectic 
substances 

 
water, coffee and tea leaf fermentation, oil 
extraction, virus purifications, developing 
functional foods etc. [20-23,4-6]. 

 
3. CLASSIFICATION OF PECTINASES  
 
The great complexity and diversity in the smooth 
and hairy regions of pectin require several kinds 
of degrading enzymes based on the specificity of 
substrate as well as type of reactions they 
catalyse. The group of enzymes which are 
involved in the degradation of hairy region of 
pectins are rhamnogalacturonan hydrolase (RG 
hydrolase), rhamnogalacturonan lyase, 
rhamnogalacturonan rhamnohydrolase (RG 
rhamnohydrolase), rhamnogalacturonan 
galactohydrolase (RG galactouronohydrolase). 
There are only few reports about this group of 
enzymes [24,25].  

 
There are, however, other enzymes involved in 
degradation of side chains of pectins which 
include α-arabinofuranosidase [E.C 3.2.1.55], 
endoarabinase [E.C 3.2.1.99], β-galactosidase 

[E.C 3.2.1.23], endogalactanase [E.C 3.2.1.89] 
and feruloyl and p-coumaroyl esterases [26]. 
There is a need for extensive studies on these 
groups of enzymes targeting their structural and 
functional aspects so as to explore its industrial 
applications. Some of these enzymes are 
discussed below briefly. 

 

3.1 Pectinases Degarading Hairy Region 
 
3.1.1 Rhamnogalacturonan Hydrolases (RG) 
 
These enzymes randomly hydrolyse the 
rhamnogalacturonan chain producing 
oligogalacturonates [27]. RG-hydrolase 
hydrolyses the α-1, 2-rhamnose linkage of 
galacturonic acid to release oligosaccharides 
with rhamnose at the non-reducing end. 
 
3.1.2 Rhamnogalacturonan lyases (RG 

lyases) 
 

(EC 4.2.2.-): These cleave the ‘rhamnose α-1,4-
galacturonic acid’ linkage to release an 
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unsaturated galacturonate at non-reducing end 
of the oligomer and a second oligomer containing 
a rhamnose as a reducing end residue [25]. 
These enzymes are classified into 
polysaccharides-lyase families 4 and 11. 
 
3.1.3 Rhamnogalacturonan (RG) 

rhamnohydrolase (EC 3.2.1.40) 
 
These are also known as rhamnogalacturonan     
α-L-rhamnopyranohydrolase or α-L-
rhamnosidase.Theycarry out the hydrolysis of 
rhamnogalacturonan at the non-reducing end 
producing rhamnose [28]. These enzymes are 
classified into glycosyl-hydrolase families 28, 78, 
106. 
 
3.1.4 Rhamnogalacturonan glacturono-

hydrolases (EC 3.2.1.-) 
 
Produces monogalacturonate by the hydrolytic 
cleavage of rhamnogalacturonan chain at the 
non- reducing end. It is classified into glycosyl-
hydrolase family 28. 
 
3.1.5 Rhamnogalacturonan acetylesterases 

(C 3.1.1.-) 
 
Carries out hydrolytic cleavage of acetyl groups 
from rhmnogalacturonan chain. It is classified 
into carbohydrate esterase family 12. 
 
3.1.6 Xylogalacturonan hydrolasee                              

(EC 3.2.1.-) 
 
Produces xylose-galacturonate dimers by 
hydrolytic cleavage of glycosidic linkages 
between two galacturonate residues in xylose-
substituted rhamnogalacturonan chain [29]. 
These enzymes are also classified into glycosyl-
hydrolase family 28. 
 

3.2 Pectinases Degrading Smooth Region 
of Pectin   

 

The group of enzymes which are associated with 
the degradation of “smooth region” 
(homogalacturonan) can be broadly categorized 
in two groups namely esterases and 
depolymerases. The detail classification of 
pectinases is shown in Table-1. 

 

3.2.1 Esterases (PME/PAE) 
 

This group of enzymes are basically 
deesterifying enzymes which remove methoxyl 
and acetyl residues of pectin to produce 
polygalacturonic acid. It includes pectin methyl 

esterases [PME, E.C 3.1.1.11] and pectin acetyl 
esterase [PAE, E.C 3.1.1.6]. 
 
3.2.1.1 Pectin Methyl Esterase (PME) 
 
Pectin methyl esterase or pectin esterase               
(EC 3.1.1.11) catalyzes de-methylesterification of 
pectin forming pectic acid and methanol. The 
enzyme acts preferentially on a methyl ester 
group of galacturonate unit next to a non-
esterified galacturonate unit releasing methanol 
and proton, creating negatively charged carboxyl 
groups. It acts prior to polygalacturonase and 
pectate lyases, which need non-esterified 
substrates [30].  
 
It is classified into carbohydrate esterase family 
8, CE8 [31]. PME and its proteinaceous inhibitor 
[32] along with an insight to structure and 
function [33] have been reviewed.    
 
3.2.1.2 Pectin Acetyl Esterase (PAE) 
 
Pectin acetyl esterase (EC 3.1.1.-) hydrolyses 
the acetyl ester in the homogalacturonan region 
of pectin forming pectic acid and acetate [34]. It 
is classified into carbohydrate esterase families 
12 and 13 [31]. 
 
3.2.2 Depolymerases  

 
The other subclass of smooth region 
(homogalacturonan) degrading group are broadly 
termed as depolymerases which break the α-1,      
4 linkages either by hydrolysis i.e. 
polygalacturonases [PG, E.C 3.2.1.15] or via 
transelimination mechanism namely pectate 
lyases [PL, E.C 4.2.2.2] and pectin lyases [PNL, 
E.C 4.2.2.10]. 
 
3.2.2.1 Polygalacturonases (PG) 

 
Polygalacturonases catalyzes hydrolysis of α-
1,4-glycosidic linkages in polygalacturonic acid 
(PGA) producing D-galacturonate. It is 
essentially a hydrolase classified into glycosyl-
hydrolases family 28 [35]. Based on the mode of 
action it is further classified as Endo-PG and 
Exo-PG. 

 
3.2.2.1.1 Endo-PG (EC 3.2.1.15) 

 
Endo-PG hydrolyses PGA in a random fashion 
and liberates saturated oligogalacturonides and 
galacturonic acid. Endo-PGs are produced by 
numerous fungi and yeast, higher plants                
and some phytoparasitic nematodes [36]. 
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Table 1. Classification of pectinases 
 

Enzymes E. C. Number Mode of action  Action pattern Primary substrate  Product 

Esterase 

Pectin methyl esterase 3.1.1.11 Hydrolysis Random Pectin Pectic acid+methanol 

Depolymerase 

A. Hydrolases 

Protopectinases  Hydrolysis Random Protopectin Pectin  

Endopolygalacturonase 3.2.1.15 Hydrolysis Random Pectic acid Oligogalcturonates 

Exopolygalacturonase 3.2.1.67 Hydrolysis Terminal Pectic acid Monogalacturonate 

Exopolygalacturonan-
digalacturonohydrolase 

3.2.1.82 Hydrolysis Penultimate 
bonds 

Pectic acid Digalacturonates 

Oligogalacturonate hydrolase  Hydrolysis Terminal Trigalacturonate Monogalacturonates 

∆4:5 Unsaturated oligogalcturonate 
hydrolases 

 Hydrolysis Terminal ∆4:5(Galacturonate)n Unsaturated 
Monogalacturonates & 
saturated (n-1) 

Endopolymethyl-galacturonase  Hydrolysis Random Esterified pectin Oligomethylgalacturonates 

Exopolymethyl-galacturonase  Hydrolysis Terminal Esterified pectin monogalacturonate 

B. Lyases 

Endopolygalacturonate lyase 4.2.2.2 Trans-elimination Random Pectic acid Unsaturated 
Oligogalacturonates 

Exopolygalacturonate lyase 4.2.2.9 Trans-elimination Penultimate 
bonds 

Pectic acid Unsaturated digalacturonates 

Oligo-D-galactosiduronate lyase 4.2.2.6 Trans-elimination Terminal Unsaturated 
digalacturonates 

Unsaturated 
monogalacturonates 

Endopolymethyl-D-galactosiduronate  
lyase 

4.2.2.10 Trans-elimination Random Unsaturated Poly-
(methyl-D-
digalacturonates) 

Unsaturated 
methyloligogalacturonates 

Endopolymethyl-D-galactosiduronate  
lyase 

 Trans-elimination Terminal Unsaturated Poly-
(methyl-D-
digalacturonates) 

Unsaturated 
methylmonogalacturonates 
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3.2.2.1.2 Exo-PG (EC 3.2.1.67)  
 
It catalyses the hydrolytic release of saturated 
galacturonic acid residue from non-reducing end 
of homogalacturonan. Exo-PGs are produced by 
bacteria and fungi. Two types of exo-PG are 
identified namely fungal and bacterial exo-PGs. 
Fungal exo-PGs produce monogalacturonic acid 
as the main end product and have pH optima of 
4.0-6.0 [36]. This enzyme is also called 
galacturan 1,4-α-galacturonidase or exo-PG 1. 
However, bacterial exo-PG enzymes produce 
digalacturonic acid as the main end product. 
They are mostly designated as exo-
polygalacturonidase or exo-PG 2. 

 
3.2.2.2 Pectin Lyase (PNL) 
 
Pectin lyase (EC 4.2.2.10) cleaves pectin by β-
elimination mechanism that results in the 
formation of 4, 5 unsaturated oligogalacturonates 
without affecting the ester content of the               
polymer chain, which is responsible for specific 
aroma of fruits. It does not produce methanol 
which is toxic and hence preferred in fruit juice 

clarification industries. For the first time, the 
application of alkaline pectin lyase in retting                    
of natural fiber was elucidated [37]. An exclusive 
review highlighting the diverse sources, 
purification and characterization of pectin                   
lyases from different sources and molecular 
biology of pectin lyases has recently been 
published [7]. 

 

4. APPLICATION OF PECTINASES  
 

Pectinase production shares about 10% of the 
overall manufacturing of enzyme preparations 
[3]. On the basis of their biochemical properties, 
pectinase have been utilized in number of 
industries. Acid pectinases are used in 
clarification of fruit juices, maceration of 
vegetables in the production of pastes and 
puress, wine making etc. Alkaline pectinase finds 
application in processing of natural textile fibers 
(such as jute, flax and hemp), treatment of pectic 
waste water, coffee and tea fermentation, 
vegetable oil extraction, treatment of paper pulp 
etc. The diverse applications of pectinases are 
summarized in Fig. 2. 

 

 
 

Fig. 2. Pictorial representation of diverse application of pectinases 
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5. PECTATE LYASES  
 
Pectate lyase (PL) acts on de-esterified pectin 
(pectate) and cleaves galactosidase linkage 
forming unsaturated product 4,5-D galacturonate 
by trans-elimination reaction. On the basis of 
random or sequential cleavage of α -1,4 
glycosidic links in pectic acid (polygalacturonic 
acid), pectate lyase can be categorized as Endo 
PL  (4.2.2.1) and exo PL (4.2.2.2). Cleavage by 
PL requires calcium ions, hence it is strongly 
inhibited by chelating agents such as EDTA [21]. 
PLs are mostly secreted by plant pathogens but 
the abundance of PL like sequence in some plant 
genomes such as Arabidopsis strongly suggests 
an important role in various plant developmental 
processes [8,4]. The microbial pectate lyases are 
preferred for the bioscouring applications and 
directed evolution of a novel pectate lyase for 
processing cotton fabric, ramie degumming            
has been attempted [38,39]. Biochemical 
characterization of microbial pectate lyases along 
with protein structure has recently been reviewed 
[4]. Pectate lyase is widely distributed in diverse 
families of microorganism and several pectate 
lyases have been reported from bacteria, 
actinomycetes, fungi and yeasts. 
 

5.1 Purification and Characterization of 
Pectate Lyases from Different 
Microbial Sources 

 
The purification and biochemical characterization 
of microbial pectate lyases from diverse sources 
have been reviewed earlier. An updated list of 
the microbial pectate lyases produced from 
different sources with detail about the purification 
strategies and biochemical characteristics 
reported so far is shown in Table 2. 
 

5.2 Cloning and Expression of Microbial 
Pectate Lyases 

 
There exists great diversity of pectate lyases 
genes and several pectate lyase genes have 
been cloned from diverse sources both microbial 
and plants. The in-silico characterization of 
pectate lyase protein sequences from different 
microbial sources for homology search, multiple 
sequence alignment, phylogenetic tree 
construction and motif analysis has recently been 
reported [40]. The extensive list of cloned pectate 
lyase genes mainly from bacterial and fungi is 
provided in Table 3 and detail is discussed. The 
diversity of cloned pectate lyase genes mainly 
from bacterial and fungal sources is shown by 

constructing phylogenetic tree based on the 
translated protein sequences (Fig. 3). 
 
5.2.1 Bacterial pectate lyase  
 
Pectate lyase genes from bacteria Erwinia 
chrysanthemi and Erwinia caratovora have been 
extensively characterized. The introduction of the 
cloned pectate lyase genes from Erwinia 
chrysanthemi namely pelB or pelE into 
Escherichia coli resulted in the development of 
blackleg disease symptoms in potato similar to 
what has been observed by the infection of the 
pathogen Erwinia carotovora [41]. Heterologous 
expression of an Erwinia carotovora subsp, 
atroseptica pectate lyase 3 (PL3) genes in 
Aspergillus niger, A. nidulans and A. awamori 
have been reported [41]. A total of seven putative 
pectate lyase clones were screened from the 
genomic library of Erwinia chrysanthemi EC16 
[43]. These seven clones secreted PL into the 
periplasm or extracellular fluid. It was suggested 
that gene for the enzyme of pI 9.8 might be 
nontandemly repeated on the chromosome 
because its clone was obtained more frequently 
from the library. Expression studies of subclones 
of plasmids in E. coli suggested that translation 
signals and signal peptide sequences of                     
E. chrysanthemi genes functions well in E. coli. 
Gene annotation information from Dickeya 
chrysanthemi isolated from a recreational lake 
reveals the presence of multiple copies of 
pectate lyase in different contigs [44] 
 
The pelB and pelE genes of Erwinia 
chrysanthemi EC16 have been over expressed in 
Escherichia coli host cells [45]. These genes 
coded for enzyme with similar physical properties 
viz.molecular weight 40 kDa. These enzymes 
were predominantly secreted in the periplasm 
than in the culture medium. A purine-rich Shine-
Delgarno sequence with an internal AGGA is 
located at base 241 and is appropriately 
positioned 5' to the presumed translational start 
codonat base 253 of pelE. Erwinia chrysanthemi 
pelE sequence beginning at base 103 
showshomology in 9 of 13 positions with the 
consensus E. coli catabolite activator protein 
binding sequence and contains a                             
properly positioned obligatory G(T/A)G sequence 
at base 107. An eleven base palindromic 
sequence occurs at positions 168 through 178, 
downstream from the putative promoter and 
catabolite activator protein-binding sites. This 
sequence could be an operator sequence 
regulating peLE production by a trans-acting 
element produced by E. chrysanthemi EC16.          
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The sequence study of pelB has shown that the 
presumed ATG translational start codon at base 
714 is favorably positioned behind a Shine-
Delgarno box with the same internal AGGA 
sequence as the pelE gene.A sequence 
beginning at base 516 is expected to function as 
a strong promoter in E. coli, and a                        
possible catabolite activator protein-binding                
site is present beginning at base 558. The 11-
base palindromic sequence observed in the pelE 
gene is not present in the 5' region of the pelB 
gene.  
 
Few pectate lyase genes from Erwinia 
chrysanthemi EC16 have been cloned in vectors 
such as pUC9 plasmid and phage lambda. 
These genes are closely located on the 
chromosome and are expressed constitutively 
but accumulate in periplsasm rather than 
secreted into the culture medium [46]. The pelC 

gene of E. chrysanthemi EC16 with single ORF 
shows considerable homology to pelB 
gene.Significant homology is not found between 
the 5' noncoding DNA of pelC and that of pelB, 
but possible promoter elements are present in 
both genes. No identifiable cataboliterepressor-
binding site was present in the 5' DNA of 
pelC.The predicted molecular weight of the PLc 
preprotein is 39.9 kDa and that of the mature 
protein is 37.6 kDa.The pelA gene codes for 
mature enzyme of 361amino acid with calculated 
molecular weight of 38.7 kDa. The corresponding 
gene has ShineDalgarno sequence just before 
assumed start codon at position 1099. 5' 
untranslated end of the gene has unusually long 
stretches of AT-rich DNA. The gene is terminated 
with TAA stop codon and a GC-rich palindromic 
sequence followed by a T repeat is found after 
the translational stop at positions 2295 to 
2320[47]. 

 

 
 

Fig. 3. Phylogenetic tree showing diversity of cloned pectate lyase genes
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Table 2. Biochemical properties of microbial pectate lyases 
 

Sl. no. Source Purification strategy Optimum pH Optimum temp. Km Molecular weight References 
1 Erwinia carotovora Ion-exchange 

chromatography 
8.3 40  44 [104] 

2 Erwinia chrysanthemi EC16  7.5-8.0   76 [105] 
3 Bacillus subtilis SO113  8.4 40 0.86 42 [106] 
4 Bacillus macerans  9.0 60 ------ 35 [107] 
5 Erwinia chrysanthemi Pel A  8.6 50 0.43 44 [108] 
6 Amycolata sp.  10 70 0.02 31 [109] 
7 Fusarium solani f. sp.pisi Gel filtration 10.0   29 [90] 
8 Fusarium solani f. sp.pisi Mono Q anion exchange 9.5 55  26 [89] 
9 Fusarium moniliformae  8.5 50 1.2 12.1 [110,111] 
10 Pseudomonas fluorescens  8.5-9.5 46-52 1.28 41-42 [112] 
11 Thermomonospora fusca  10.5 60 0.5 56 [113] 
12 Erwinia chrysanthemi 

Pel A 

Pel B 

Pel C 

Pel D 

Pel E 

  

8.5 

9.3 

9.2 

8.8 

8.0 

 

55 

60 

60 

50 

50 

 

0.03 

0.02 

0.28 

0.42 

 

42.5 

39.5 

39.5 

42.0 

42.5 

 

 

[50] 

13 Bacillus sp. KSM-P103  10.5 60-65  33.3 [58] 
14 Bacillus sp.Ksm P7 DEAE coloumn 

chromatography 
10.5 65  33 [114] 

15 Bacillus sp.Ksm P15 DEAE coloumn 

chromatography 

11.5 55  70 [61] 

16 Bacillus sp KSM-P-15  10.5 50-55  33 [60] 
17 Bacillus sp.P-4-N DEAE coloumn 

chromatography 

11 50  34 [59] 

18 Thermo anaerobacter italicus 
sp. 

Ion-exchange & 
Hydrophobic 
chromatography 

9.0 80 0.5 135 [115] 

19 Bacillus sp.TS 47  8.0 70 ---- 50 [116] 
20 Bacillus sp.BP-23  10.0 50  23.2 [55] 
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Sl. no. Source Purification strategy Optimum pH Optimum temp. Km Molecular weight References 
21 Clostridium cellulovorans 

cellulosome 
 8.0 75 ----- 42 [117] 

22 Pseudoalteromonas 
haloplanktis 

Anion exchange 9-10.0 30 
30 

1 g/L 
5 g/L 

68 
75 

[77] 

23 Pseudomonascellulose  10 62 0.104 68.5 [76] 
24 Bacillus sp.P4-N  11.5 70 ---- 35 [118] 
25 Bacillus alcalophillus  9-10 45 0.08 35 [119] 
26 Thermotoga maritima Ion exchange 

chromatography 
9.0 90 0.06 40 [75] 

27 Bacillus licheniformis  8.5 70 0.56 33.4 [57] 
28 Mrakia frigid  8.5-9.0 30   [120] 
29 Bacillus pumilusBK2  8.5 70 0.24 37.3 [121] 
30 Bacillus subtilis 168  10.0 65 0.15 23 [56] 
31 Aspergillus nidulans Ni-Nitriloacetate agarose 

coloumn 
10 50 0.50 55 [99] 

32 Bacillus sp.N16-5 DEAE Sepharose 
coloumn & Ion exchange 

11.5 50  42 [68] 

33 Bacillus sp. Ion Exchange 
chromatography 

9.0 60 0.025 42 [67] 

34 Streptomyces 
thermocarboxydus 

Ni-Nitriloacetate agarose 
coloumn 

------ --------- ------ 23 [122] 

35 Phytophthora capsici Affinity & gel filtration 
chromatography 

   44 [123] 

36 Pectobacterium cartovorum -------------- 10 70 0.4 ----- [124] 
37 Bacillus subtilis Ni-Nitriloacetate agarose 

coloumn 
9.5 50 0.09 46 [66] 

38 Bacillus subtilis 7-3-3 ------------- 9.5 50 ---------- 25 [125] 
39 Bacillus stearothermophilus  7.5 60   [126] 

Bacillus cereus  8.0 50 
Bacillus subtilis  9.0 50 

40 Dickeya dadanti ------------ 7.4 50 2.5 43 [127] 
41 Volvariella volvacea  10.0 60 0.681  [128] 
42 Geogenia muralis Anion exchange & gel 

filtration chromatography 
10.0 50  51 [129] 
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Table 3. List of cloned microbial pectate lyase genes 
 

S. 
no. 

Source Gene Vector Host Molecular mass of 
recombinant PL (kDa) 

Characteristics of 
recombinant PL 

References 

1 Erwinia 
chrysanthemi 

PL pBR329,pHC79 E. coli 39 pI=9.8, pH=8.5 [43] 

2 Erwinia 
chrysanthemi 

PL pBR322 E. coli HB101 Multiple forms pI=7.8 [130] 

3 Erwinia caratovora 
EC 14 

 pBR322 E. coli  pI=9.5 [131] 

4 Erwinia caratovora 
sub sp atroseptica 

 pBR322  31 pI=9.2 [132] 

5 Erwinia caratovora Pel B pSH2111, pUC8 E. coli HB101 44 pH=8.3, OT=40 [104] 

6 Erwinia 
chrysanthemi  

(EC 16) 

Pel A,Pel 
B, Pel C, 
Pel E 

pAKC311, 
pAKC312, 
pAKC313,pAKC34 

   [49] 

7 Erwinia 
chrysanthemi EC16 

Pel A, 
Pel C 

pINK1 E. coli Pel A-45  

Pel C-39 

 [47] 

8 Yersinia 
pseudotuberculosis 

PL Y pUC, pPELY E. coli DH5α 55  pI=4.5 [71] 

9 Erwinia caratovora PAL I, 
PAL II 

pNN1, pNN101 E. coli HB101 37.5   [133] 

10 Erwinia 
chrysanthemi EC16 

 pUC19,pBR322, 
pUM24 

E. coli. DH5α  pH=7.5-8 [105] 

11 Erwinia caratovora 
Er 

PelIII pUC18,pBR322 E. caratovora, 

E. coli HB101 

 pH=7.5 [134] 

12 Pseudomonas  

fluorescens 

Pel pBR 322,pROTM2 

 

E. coli HB101   [73] 

13 Bacillus subtilis  pT7-5,pT7-6 

pNP111,pNP112 

E. coli 42  [135] 

14 Pseudomonas 
marginalis 

Pel pUC119 E. coli DH5α 40.8  [74] 

15 Erwinia 
chrysanthemi 3937 

PelL     [51] 
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S. 
no. 

Source Gene Vector Host Molecular mass of 
recombinant PL (kDa) 

Characteristics of 
recombinant PL 

References 

16 Erwinia 
chrysanthemi 3937 

PelZ     [52] 

17 Erwinia caratovora 
atroseptica 

EcoPL3 pGW1100 

pGEM-72f(+) 

Aspergillus niger, 
A. awamori,               
A. nidulans 

60   [42] 

18 Erwinia 
chrysanthemi 3937 

Pel I pULB110 

p365T,pT406, 

pT7-6 

 34 pI=9, pH=8.5,OT=37°C [34] 

19 Pseudomonas 
syringae PV 
lachrymans 

Pel s pCPP34,pCPP47 Pseudomonas 
syringae PV 
BUVS1 

 pI=9.4 [75] 

20 Amycolata sp. Pel pIJ702 Streptomyces 
lividans TK 24 

30  [78] 

21 Erwinia 
chrysanthemi 3937 

Pel A to 
Pel E 

pT7-5, pT7-6 E. coli NM522 

E. coli BL21(DE 3) 

   pH O.T.( °C) [50] 

Pel A 42.5 Pel A 8.5 55 

Pel B 39.5 Pel B 9.3 60 

Pel C 39.5 Pel C 9.2 60 

Pel D 42 Pel D 8.8 50 

Pel E 42.5 Pel E 8 50 

22 Bacillus sp.KSM-
P103 

Pel103 pUC18, pHSP64 E. coli HB101 33 pI=10.5,pH=10.5, 60-65°C [58] 

23 Azospirillum 
irakense 

Pel A pUC18 

pLAFR3 

E. coli  pH=9,OT=37°C, 

Km=0.076 mg ml
-1

 

Vmax=23 µmol ml
-1

 

[79] 

24 Erwinia 
chrysanthemi 3937 

PeLX pUC18, pBSAp, 
pBSCm,  pT7-5 

E. coli NM522 

E. coli  
BL21(DE3) 

  [34] 

25 Bacillus sp. KSM-
P15 

Pel-15H pHSG398 E. coli HB101 69.5  [61] 

26 Bacillus sp P-4-N Pel-4A pUC18,pHY300PLK Bacillus subtilis 
ISW1214 

34 pI=9.7, pH=10.5, OT=30°C [59] 
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S. 
no. 

Source Gene Vector Host Molecular mass of 
recombinant PL (kDa) 

Characteristics of 
recombinant PL 

References 

27 Bacillus sp. BP23 PelA pBR322 E. coli 5K 23.2 pH=10,OT=50°C,satbilty 
pH=4-8,stable 
temperature=40-60°C 

[55] 

28 Bacillus sp. KSM P-
15 

Pel 15E pUC18 E. coli HB101, 
Bacillus subtilis 
ISW1214 

33 pH=10.5 

 

[60] 

29 Bacillus sp TS47 BsPel 
pBluescript II SK+ 

,pUBPL 47 
B.subtilis 50 70°C [136] 

30 Pseudomonas 
cellulosa 

Pel 10A λZAPII E. coli XL1Blue 

E. coli BL21 

E. coli XLOLR 

38 pH=10 OT=62°C [76] 

31 Pseudoalteromonas 
haloplanktis 
ANT1505 

PelA 

PelB 

pRSET-A E. coli DH5α 

E. coli BL21 

68, 75 pH=9-10, OT=30°C 

Km=1 mg ml-1 

[77] 

32 Bacillus subtilis 
IFO3134 

 pET22b E. coli 45.4  pH=7, pI=8.3,OT=50°C [62] 

33 Treponema 
pectinovorum 

Pel A pLAFR5(λ phage), 
pBluescript 

E. coli. DH5α 48.172 pH=8.6, OT=37°C [80] 

34 Thermotoga 
maritima MSB8 
(DSM 3109) 

PelA pET24d E. coli  TG1, 

E. coli BL21 

 Km=0.06,pH=9,OT=90°C [81] 

35 Bacillus 
licheniformis 14A 

PelA  E.coli 33.4 Km=0.56 g/l, 
Vmax=51µmol/min 

[57] 

36 Bacillus subtilis Yup A pJF118HE,pET28a E. coli 5K, 

E. coli.BL21 

24.2 pH=10, OT=65°C,pI=8.85 [56] 

37 Bacillus subtilis 
WSH B04-02 

 pET22b, pHsh E. coli JM109 43 pH=9.4,OT=50°C [63] 

38 Bacillus subtilis  pPIC9K Pichia pastoris 
GS115 

43.6 pH=9.4 OT=65°C [65] 

39 Xanthomonas 
compestries 

PLxc pSD80 E. coli Rosetta 2  pH=8.5, OT=50°C [83] 

40 Bacillus subtilis PEL 168 pET28a, Pichia pastoris 48.6, pH=9.5, opti [66] 
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S. 
no. 

Source Gene Vector Host Molecular mass of 
recombinant PL (kDa) 

Characteristics of 
recombinant PL 

References 

pHBM905A 51.4 temp=50°C,pH=9.5, 
Km=0.09 mg ml

-1
, 

Vmax=18.13 µmol ml-1 

41 Xanthomonas 
compestris PV 
compestris 

Pel A1, 

Pel A2 

yT&A, 
pOK12,pRK415 

E. coli DH5α 40.19 Pel A1 , pI=8.76 [82] 

42 Bacillus sp. N16-5 Pel A pUC 18, pET28a E. coli DH5α,             
E. coli BL21 

35.9 pI=5.87,pH=11.5, OT=50
0
C [63] 

43 Yersinia 
enterocolitica 

YeOGL pET28a E. coli BL21 

pLysS(DE3) 

44.2  [86] 

44 Paenibacillus 
amylolyticus 

PelA,PelB pUC19 derivatives E. coli DH5α   [88] 

45 Bacillus strain Pel22,Pel 
66,Pel 90 

pUC18 E. coli NM522   [67] 

46 Bacillus subtilis BsPel pETsd E. coli BL21 (DE3)   [68] 

47 Caldicellulosiraptor 
bescii 

PL3 pET-45b E. coli BL21(DE 3) 28.9  [87] 

48 Bacillus pumilus 
DKS1 

Pel pET20b(+) E. coli XL1Blue 

E. coli BL21 

35 pH=8.5 , OT=60°C [69] 

49 Bacillus subtilis 
WB600 

Pel pWB600, pWB980 B.subtilis 44 pH=9, OT=50°C [137] 

50 Xanthomonas 
compestris 
ACCC10048 

 pGEM-T-Easy 

pET-22b 

E. coli BL21(DE3)  pH=9, OT=30°C 

Km=4.9g l-1 

Vmax=18.13 µmol min-1 

[85] 

51 Fusarium solani Pel A  E. coli DH5α  pH-=8 OT=30°C [73] 

52 Fusarium solani Pel B pHILD2 Pichia pastoris 29 pH=10,OT=30°C, 

Km=566 µg/ml 

Vmax=1000 U/mg 

[89] 

53 Fusarium solani Pel C pHILS1 Pichia pastoris 26 pH=9.5,OT=55°C, 

Km=670 µg/ml 

Vmax=1100 U/mg 

[90] 
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S. 
no. 

Source Gene Vector Host Molecular mass of 
recombinant PL (kDa) 

Characteristics of 
recombinant PL 

References 

54 Fusarium solani Pel A pHILD2 Pichia pastoris 23 pH=10, Km=1 mg ml-1 

Vmax 500U ml
-1

 

[91] 

55 Colletotrichum 
gloeosporioides 

 pRD091 

pCD101 

E. coli XL1Blue 35.5  [93] 

56 Fusarium 
oxysporuum f.sp. 
lycopersici 

PL1 pBluescript/KS+    [138] 

57 Colletotrichum 
gloeosporiodes 

Pel 1 

Pel2 

pBluescript II KS  Pel1(33.2) 

Pel2(32.8) 

Pel 1(pI=8.41) 

Pel2(pI=8.29) 

[94] 

58 Colletotrichum 
gloeosporiodes 

 pGEM-7Z, 

pPCPH-1 

C. magna   [96] 

59 Phytophthora 
infestans 

 Uni-ZapXR E. coli XL1Blue   [97] 

60 Aspergillus nidulans PelA pVBSzqx Bacillus subtilis  pH=8.5, OT=50°C 
Vmax=77 µmol ml-1 

Km=0.50 mg ml-1 

[99] 

61 Fusarium 
oxysporium f.sp. 
cubenserace 1 

PL1 pPICZaA Pichia pastoris 24 pH=10, OT=50°C [92] 

62 Phytophthora 
capsici 

Pcpel2 pET, pMAL E. coli BL21(DE3) 
pLYsS 

44 pH=8.5, OT=40°C [101] 

63 Penicillium 
occitanis CT1 

Pal.,1 pMOSblue 

λMOS10X 

E. coli TOP10 

E. coli ER1647 

 pH=6 OT=50°C [103] 

64 Phytophthora 
capsici 

Pcpel 1  Pichia pastoris 66 pI= 6.8 [102] 

65 Colletotrichum 
coccodes 

Ccpel1 pGEM-T-Easy 
pGFP-CA 

pNV15, poE 

   [95] 
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Comparison of 1212 bp long pelE and 1173 bp 
long pelD gene of E. chrysanthemi B374 shows 
good homology in the coding region and 
relatively less homology in 5’ and 3’non coding 
region. The signal sequence in pelE and pelD 
contains four and three basic residues which are 
followed by a stretch of seven and eleven 
hydrophobic amino acids respectively. The 
cleavage site for pelD signal sequence is ala-ser-
ala at position 41 where as in pelE cleavage site 
is asn-arg-ala at position 31.In pelE, a potential 
ribosome binding site AGGAA is positioned 5' of 
the putative ATG start codon at base 311.At 
position -102 relative to the ATG start codon 
there is a TTCACA-(18 bp)-CATAAA sequence 
which has nine bases conserved out of the 12 
bases of the consensus E. coli σ70promoter 
sequence. At position -122 relative to the 
putative ATG start codon,a sequence highly 
homologous to the E. coli CAP-binding site 
consensus sequence is present. In case of 
pelD,two putative E. coli-like σ70 weak promoter 
sequences are present 65 bp and 33 bp 
upstream of the putative ATG start codon. 
Twenty one base pair downstream of the TAA 
stop codon, an 8bp GC-rich inverted repeat 
followed by a stretch of 6 Ts is present which 
serves as a rho-independent terminator 
sequence [48].  
 

Analysis of PelA and Pel E encoding acidic 
(pI4.2) and basic (pI 10.0) pectate lyase protein 
of Erwinia chrysanthemi EC16 revealed gene 
duplication and divergence [47]. In Erwinia 
chrysanthemi 3937, five major isoenzymes of 
pectate lyase designated as PelA to PelE [50] 
along with a set of secondary pectate lyases 
namely PelL [51], PelI [34], PelZ [52] and Pel X 
[53] have been reported. The ORF of pelL gene 
begins with ATG codon at position 410 and ends 
with TAA at 1685 position. It codes for 425 amino 
acid long protein which includes amino terminal 
signal sequence of 25 amino acids. The start 
codon is preceded by the potential ribosome 
binding site GAGG. The potential promoter 
region shows homology to the classical σ70 
promoter. Probable operator region contains            
two imperfect inverted repeats A1-A2 
(AGAGGCTGCG-3nt- CGCAGCCTTT) and B1-
B2 (ATGATTTT-3nt-AACATCAT), found at 
positions 318 and 390 respectively.Two 
imperfect direct repeats D1-D2 (TGACGACAT-1 
nt TGACGAAAT) are also found in this region 
which overlaps the -35 element of the potential 
promoter. 
 

A GC-rich inverted repeat (GGCTGC-4nt-
GCAGCC) followed by a stretch of T residues is 

found 32 nucleotides ahead of translation stop 
codon.This sequence is believed to be involved 
in termination of pelL transcription. The ORF of 
pelI begins with start codon ATG at position 892 
separated by potential ribosome binding site, 
AAGGAG, and ends with TGA at position       
1924.A potential KdgR box, TAAAAAACA 
GATCTTTGTC is centered 19 nucleotides 
upstream from the putative pelI promoter.This 
sequence is believed to regulate the transcription 
of pelI gene.However, this sequence differs from 
the consensus by the absence of a T residue at 
position 13 which is conserved in all operators 
that interact with the KdgR protein. A potential 
CRP-binding site partially overlaps the            
KdgR binding site (ACAGATCTTTGTCACA) 
suggesting that pelI transcriptionmight be 
activated by CRP.A GC-rich inverted repeat 
followed by a stretch of T residues, typical of a 
Rho-independent transcription terminator is 
centered 69 nucleotides after the pelI 
translational stop.The ORF of pelX begins with 
ATG codon at position 503 and endswith TAA at 
position 2705.  The pelX ATG start codon is 
preceded by the potential ribosome binding site 
GGGGAA 3 nt upstream and by a potential 
promoter 16 nt upstream.A potential KdgR                
box, with 17 of 18 nt conserved, 
AAAGAAACANTGTTTCATTis centered 12 nt 
upstream from the putative pelX promoter. A 
potential CRP-binding site TGTGAN6CAAAA 
partially overlaps the KdgR-binding site. The 
pelX translational stop is followed by a GC-rich 
inverted repeat located 26 nt downstream. 
 

A single copy pectate lyase gene from Bacillus 
subtilis genome was confirmed through southern 
hybridization and was expressed in E. coli [54]. It 
contains a single open reading frame of 1,420 bp 
starting with an ATG codon at nucleotide 205 
and stops with a TAA termination codon at 1,464 
coding for protein of 420 amino acids. There is a 
typical 21 amino acids signal sequence at                
the amino terminal.A purine-rich sequence 
(AGAAAATGGGGGTA)is present upstream of 
ATG initiation codon and is believed to function 
as ribosome binding site (RBS). Upstream from 
the RBS, there are putative -35 (TGAATG) and - 
10 (TATATT) promoter signals between 121- 126 
and between 144- 150 nucleotides, respectively. 
The sequence at -10 regions is homologous to -
10 promoter sequence recognized by the 
σ

43
transcription factor of B. subtilis and also by 

the σ70transcription factor of E. coli. An inverted 
sequence is present downstream of TAA stop 
codon between 1,475 and 1,508 nucleotides 
which can form secondary structure that may 
have role in transcription termination. 
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Two unusual PL showing activity on highly 
esterified citrus pectin has been cloned which 
shows similarity with PL of Fusarium solani, 
Erwinia carotovora, Erwinia chrysanthemi and 
Bacillus subtilis yvpA gene [55,56]. The pelA 
gene contains an ORF of 666 nucleotides 
encoding a protein of 222 residues. The N-
terminal signal sequence of 25 residues contains 
two positively charged amino acids at its N-
terminal end, followed by a hydrophobic stretch 
of 18 amino acids. This hydrophobic stretch is 
followed by proline and an amino acid region with 
the sequence AAAA.There is an AAGGGAGGA 
sequence eight nucleotides upstream of the ATG 
start codon, resembling that of a ribosome-
binding site. Upstream of the pelA structural 
gene, a putative promoter sequence, identical to 
those recognized by the σ

A
 subunit of Bacillus 

RNA polymerase, showing a -35 (TAGACA) and 
-10 (TCAAAT) region is found. In the 3’ region of 
the pectate lyase gene, an inverted repeat of 20 
bp, which could act as a transcriptional 
terminator is present. 
 
The ORF of pelC gene encoding protein of 221 
amino acids starts with TTG as initiation codon. 
This start codon is often found in Bacillus genes 
and attaches itself to translation efficiency. There 
is a GGGGAGGA sequence seven nucleotides 
upstream of the start codon, resembling that of a 
ribosome-binding site. In the 3’ region of the 
structural gene, there is an inverted repeat of 14 
bp, which could act as a transcriptional 
terminator. A thermostable and highly alkaline 
pectate lyase from Bacillus licheniformis was 
also cloned in E. coli and was found to be active 
on citrus pectate as well as sugar beet pectin 
[57]. The gene has 1026 bp ORF with a putative 
promoter sequence and a ribosome-binding site 
(5′-GGAGG-3′) located at distances of 216 bp 
and 6 bp, respectively, upstream of the ATG         
start codon.Six nucleotides inverted repeat 
downstream of the TAA acts as transcriptional 
termination. 
 
Several alkaline pectate lyase were cloned from 
different species and strains of Bacillus namely 
Bacillus KSM-P103 [58], Bacillus sp P-4-N [59], 
Bacillus sp BP 23 [55], Bacillus KSM P 15[60, 
61], Bacillus subtilis IFO3134 [62], Bacillus sp 
N16-5, Bacillus subtilis WSH B04-02 [63], 
Bacillus sp N16-5 [64]. These pectate lyase 
genes contain ORF in the range of 960- 1260 bp 
with an exception of pel-15H gene which has an 
ORF of 2031 bp encoding mature enzyme of 
69.5 kDa. The pel103 gene has ATG initiation 
codon at position 190 and TAA stop codon at 

position 1,225. The sequence from nucleotide 10 
to 39 resembles consensus sequence of σAtype 
promoter. The potential -35 region(5’-TTGGGT- 
3’) and -10 region (5’- TGGAAT- 3’) are 
separated by 18 bases.A long inverted repeat 
extends from nucleotide 1233 to 1269 and is 
known to be playing significant role in the 
termination of transcription. 
 
The ORF of pel-15H gene starts with initiation 
codon ATG at position 230 and ends with TAG 
codon at nucleotide 2261.The putative ribosome 
binding sequence 5’- AAGGA- 3’ is found 
eighteen bp upstream of initiation codon.The 
potential -35 sequence (5’- TTGTGG-3’) and -10 
sequence (5’-TAAATT-3’) of the promoter are 
separated by 17 base pairs. Two palindromic 
sequences are found 71 and 169 bp downstream 
of TAG stop codon. Similar in size to the ORF of 
pel103 gene, pel-4A starts with ATG codon at 
position 762 and ends with TAA codon at 
1799.Eight nucleotides upstream of this ORF is 
the sequence 5’-AAAGAGGT-3’, which is 
presumably the ribosome-binding site. Separated 
by 16bp, there is sequence5’-TTGAAT-3’as the 
potential –35 region and 5’-TATATT-3’as the 
potential –10 region of σA type promoter of B. 
subtilis.A long inverted-repeat sequence is found 
57 bp downstream of the termination codon from 
position 1856 to 1886.The pel-15E gene carries 
a 960 bp ORF starting with ATG initiation codon 
at position 422 ending with TAG stop codon at 
1382.The putative Shine-Dalgarno sequence 5’-
AGGAG-3’is found 9 bp upstream of the initiation 
codon.There is a putative sequence of σ

A
-type 

promoter of B. subtilis, with 5’-TAGACA-3’ and 
5’-TATACT-3’located 235 and 210 regions 
respectively and separated by 17 bp. A 
palindromic sequence is located 18 bp 
downstream of TAG termination codon. 
 
Pectate lyase genes from Bacillus subtilis 
expressed in Pichia pastoris was found to be 
active 10 times higher than when expressed in  
E. coli [65,66]. Several other PLs designated as 
pel22, pel66 and pel90 from Bacillus strain [67], 
BsPel from Bacillus subtilis [68], Bacillus pumilus 
DKS1 [69], Bacillus subtilis WB600 [70] have 
been cloned in E. coli. The ORF of pel66 and 
pel90 is 1260 bp in length while that of pel22 the 
ORF is 1062 bp in length. The ORF of pel22, 
pel66 and pel90 starts with ATG at positions 142, 
402 and 152 respectively. Termination codon for 
pel66, pel90 is TAA at positions1664 and 1414 
while stop codon for pel22 is TGA at position 
1206. The PL gene Apel from B. subtilis carries 
an ORF of 1,260 bp, encoding a signal peptide of 
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21 amino acids and a mature protein of 399 
amino acids. 
 
Besides Erwinia and Bacillus genus, pectate 
lyase genes have been cloned from other 
bacterial sources. A PLY gene from Yersinia 
pseudotuberculosis has been cloned and 
expressed in E. coli [71]. The open reading frame 
of pely gene spans 1623 bp. The start codon 
ATG is preceded by purine rich sequence which 
functions as ribosome binding site.A pel gene 
from Pseudomonas viridiflava [72] and 
Pseudomonas fluorescens was cloned and 
expressed in E. coli strain not being influenced 
by carbon source or Ca++ [73]. A Pel gene from 
Pseudomonas marginalis N6301 [74] has an 
open reading frame which begins with an ATG 
codon at position 517 and ends with a TAA 
codon at position 1657.A potential Shine-
Dalgarno sequence is present in the 5' region of 
the putative ATG start codon. E. coli σ

70
 like 

promoter sequences are found in 5’ region of 
ribosome binding site.Inverted repeat sequences 
are present at positions 410-434 and 460-484 
which may be involved in regulation of gene 
expression. 
 
The ORF of pelS from Pseudomonas syringae pv 
lachrymans encodes for 40.3 kDa protein 
including signal sequence of 29 amino acids. The 
ribosome-binding site is located 10 bp upstream 
of the start of the pelS ORF. A potential 
54promoter is predicted between 43 and 60 bp 
upstream of the start site. An interesting feature 
of pelSgene is that the inverted repeats 
downstream of the gene are not followed by T-
rich region typical of rho-independent terminators 
[75]. A Pel 10 A from Pseudomonas cellulosa 
[76] and 2 genes namely Pel A and Pel B from 
Pseudoalteromonas haloplanktis ANT1505 [77] 
were cloned and expressed in E. coli strains. The 
pel-10A gene contains a long ORF of 1950 bp 
which codes for protein of molecular mass 68.5 
kDa. The ribosome binding sequence 5’-AAGGA-
3’ is similar to the ribosome binding sequence of 
Gram-negative bacteria. Sequence analysis of 
the predicted amino acid sequence of Pel10A 
revealed a typical Gram-negative signal peptide 
of 31 residues in length and three stretches 
separated by two serine-rich linker sequences.  
 
A pectate lyase gene has been isolated from 
Amycolata sp by the activity screening of a 
genomic DNA library in Streptomyces lividans 
TK24 [78]. It has 930 bp ORF having the 
initiation codon ATG at position 316 and 
terminating with TGA at position 1246. It codes 

for a protein of 310 amino acids having a putative 
leader sequence of 26 amino acids.The protein 
does not contain cysteine. A leader peptidase 
cleaves after the sequence Ala–Thr–Ala. The 
leader sequence contains a positively charged N-
terminal followed by a hydrophobic domain and a 
proline residue.Seven bp upstream of start 
codon, the potential Shine- Dalgarno sequence 
5’-GGGAG-3’ is present. A short inverted repeat 
of 7 bp follows the 3’ end of the pel gene, which 
could function as a transcriptional terminator. 
 
The pelA gene from Azospirillum irakense, a N2-
fixing plant-associatedbacterium,has been 
isolated by heterologous expression in 
Escherichia coli [79]. It has GTG initiation codon. 
A potential Shine-Dalgarno sequence GAGGAA 
is located12 bases upstream of the start 
codon.The signal sequence has positively 
charged amino terminus, a hydrophobic core of 
12 residues in the center, and two alanine 
residues at positions 21 and 23 relative to the 
processing site. A signal peptidase I cleavage 
site is located between amino acids 24 and 25. 
 
The pelA gene from Treponema pectinovorum 
ATCC 33768, which is an oral spirochete, was 
isolated by heterologous expression of a cosmid 
library in E. coli [80]. It has an open reading 
frame of 1293 bp which codes for a protein of 
430 amino acids. A putative N-terminal signal 
sequences of 21 amino acids produces a mature 
protein of 46.7 kDa when cleaved. Pel A gene 
was cloned from a hypothermophilic bacterial 
strain Thermotoga maritima and expressed in             
E. coli. The recombinant pectate lyase was found 
to be thermostable, operating optimally at 90

0 
C 

and pH 9.0. Half- life of this enzyme for thermal 
inactivation was almost 2 h at 950 C [81].   
 
Two pectate lyase genes pelA1 and pelA2 from 
Xanthomonas campestris pv. campestris (Xcc) 
causing black rot in crucifers have also been 
cloned. It was found that pelA1 codes for the 
major pectate lyase in Xcc strain Xc17 and its 
expression is up-regulated by cAMP receptor 
protein-like protein (Clp). RpfF, an enoyl-CoA 
hydratase homologue, positively regulate pelA1 
transcription [82]. A cold-active pectate lyase 
gene cloned from Xanthomonas campestris pv. 
campestris was heterologously expressed in            
E. coli and the recombinant protein was purified 
and biochemically characterized [83]. 
 
A single beneficial mutation R236F in pectate 
lyase from Xanthomonas campestris (PLXc) 
resulted a 23-fold increase in the half-life at 45°C 
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and a 6°C increase in Tm without altering the 
catalytic efficiency of the enzyme by a            
strategy based on Melting-Temperature-Guided 
Sequence Alignment [84]. An alkaline pectate 
lyase (PL D) has been cloned from Xanthomonas 
campestris ATCC 10048 and the recombinant 
protein PLD (r-PL D) produced in Escherichia coli 
was purified showing higher activity over a wide 
pH and at lower temperatures [85]. A YeOGL, 
Oligogalacturonate lyases OGLs from Yersinia 
enterocolitica, also classified as pectate lyase 
family 22 has been cloned and expressed [86]. 
X-ray structure of YeOGL reveals the presence 
of Mn2+ ion in the active site which is co-
ordinated by three histidine, one glutamine and 
one acetate ion.Histidine, a residue that is highly 
conserved throughout the OGL family, abstracts 
the α-proton in the -1 subsite and represents a 
unique catalytic base among pectate 
lyases.Cloning and expression of PL3 from 
Caldicellulosiraptor bescii revealing structure and 
mode of action of pectate lyase has been 
reported recently [87]. Two pectate lyase genes 
Pel A and Pel B were cloned and characterized 
from Paenibacillus amylolyticus. These Pel A and 
Pel B enzymes show an unusual combination of 
pectate lyase and pectin lyase activity by 
degrading both polygalacturonic acid and highly 
methylated pectin, respectively [88]. 
 
5.2.2 Fungal pectate lyases 
 
As compared to bacterial sources there are only 
few reports of gene cloning and expression 
studies of fungal pectate lyases. Pectate lyase 
genes namely pel A, pel B and pel C have been 
cloned from Fusarium solani f. sp. pisi (Nectria 
haematococca Mating Type VI) and expressed in 
Pichia pastoris [89-91].The nucleotide sequence 
of pelB shows a single open reading frame of 
732 bp interrupted by two introns of 72 and 50 bp 
and coding protein of 244 residues. The signal 
peptide of 16 amino acids has cleavage site 
between ala-16 and ala-17, resulting in a mature 
protein of calculated molecular mass 24.2 kDa. 
One TATAAAA box is found 107 bp upstream of 
the ATG start codon. A CAAT motif is predicted 
33 nucleotides upstream from the predicted 
TATA box. The sequence ATAAAA is found 206 
nucleotides downstream from the stop codon. 
Similar to pelB the open reading frame of pelC 
carries two introns of 56 and 51 bp. However no 
signal peptide is present at the N-terminal of the 
protein. Similar to the fungal TATAAA box 
involved in transcription, a TATATAA box was 
found 162 bp 5’ to the ATG start codon. Instead 
of polyadenylation sequence, a similar stretch of 

AACAAA is present 175 bp downstream of 
termination codon. 
 
Similary PL1 from Fusarium oxysporium f.sp. 
cubenserace has also been expressed in Pichia 
pastoris [92]. Pectate lyase from Colletotrichum 
gloeosporioides [93,94] and Colletotrichum 
coccodes Ccpel [95] have also been cloned. The 
pel1 and pel2 gene from C. gloeosporioides 
revealed the presence of ORF of 1002 bp and 
990 bp respectively, both being interrupted by 
introns. The polyadenylation sequence AATAAA 
and the site for the addition of the poly(A)+ in 
pel1 is located 149 bp and 173 bp downstream of 
the stop codon, respectively. In pel2, the 
polyadenylation sequence of AATAAA is absent 
and the site for the addition of the poly(A)+ tailis 
located 88 bp downstream from the stop codon. 
The expression of pectate lyase genes from 
Colletotrichumgloeosporioides in Colletotrichum 
magna reveals the possible role of pectate lyase 
in pathogenesis [96].  
 

A pectate lyase like gene mpl1 cloned using                       
the cDNA-representational difference analysis 
subtraction method was found to be activated 
during mating of A1 and A2 strain of 
Phytophthora infestans. It was found to                  
contain a continuous open reading of 789 bp. 
More than 13 genes with sequences similar to                        
that of mpl1 have been found in the genome, 
indicating mpl1 to be a multicopy                              
gene [97]. Twenty two full length pectate lyase                 
genes were from Phytophthora capsici [98].                  
Of these, 12 pectate lyase genes were found to 
be highly induced during infection of pepper. Pel 
A gene from Aspergillus nidulans has been 
successfully expressed in Bacillus subtilis                    
[99] and E. coli [100]. Pectate lyase gene 
designated as Pcpel2 and Pcpel1from 
Phytophthora capsicin have been cloned and 
expressed in E. coli and Pichia pastoris 
respectively [101,102] revealing its significant 
role in pathogenesis. The open reading frame of 
Pcpel1I gene is 1233 bp and encodes 410 amino 
acid polypeptide, including 21 residues long 
amino terminal signal sequence. There are 6 
putative N-glycosylationsites (N66, N77,                    
N123, N139, N317 and N372), without any 
intron.The CT1 mutant of Penicillium occitanis is 
known to hyper produce extracellular pectinases 
and the fragments including a pectate lyase 
(pal1) has been isolated using cDNA and                     
RT PCR. It has been observed that the                           
CT1 mutation affects a trans-regulatory 
transcriptional factor influencing pectinase 
expression [103]. 



 
 
 
 

Dubey et al.; BBJ, 13(1): 1-26, 2016; Article no.BBJ.24893 
 
 

 
20 

 

6. CONCLUSION 
 
Pectate lyases are an important member of 
pectinases which are considered to be one of the 
virulence factors for pathogenesis and one of the 
major causes of fruit ripening. The potential 
application of microbial pectate lyases in the 
textile industry for more economical and eco-
friendly approach demands its large scale 
production. Besides searching for the novel 
microbial sources, its production optimization by 
solid state and submerged fermentation 
processes, substantial efforts have been made to 
clone and over-express the relevant pectate 
lyases genes. The directed evolution approach 
for novel pectate lyase for enzymatic scouring of 
cotton fabric has also been attempted. An insight 
to diversity of pectate lyase genes from diverse 
microbial sources is highlighted in this review. 
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