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Abstract 
From resolution of two-dimensional equation of heat in dynamic frequency 
regime, we have plotted evolution curves of temperature according to depth 
of material or in lateral direction. They will allow us to evaluate thermal be-
havior of towed material. Aim of study is to use fibers as a thermal insulating 
material by proposing a method for determining effective thermal insulation 
layer in dynamic frequency regime. 
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1. Introduction 

Controlling energy consumption in homes during hot weather, or in cold rooms 
requires, among other things, good thermal insulation. Problems of cost of syn-
thetic materials and end-of-life management lead us to propose use of biode-
gradable materials. Thus study of thermal behavior of material for use in thermal 
insulation [1] [2] is of major interest in search for energy control. 

Several methods for calculating transient or established dynamic regimes [3] 
[4] are developed for simulation of thermal behavior within material. 

We propose in this study resolution in dynamic regime established by impos-
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ing boundary conditions particular to panel of fibers. 
Temperature curves along material depth or in lateral direction will allow us 

to evaluate thermal behavior of fibers material. Influence of the thermal ex-
change coefficient on front face will be highlighted. 

2. Theory 

Equation of heat transfer through rectangular material to absence of internal 
source, is written in two dimensions (Figure 1): 

2 2
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α is thermal diffusivity coefficient of the material (m2·s−1) and is expressed as  

C
λα
ρ

=                            (2)  

where: 
- ρ (kg·m−3)is density of material, 
- C (J·kg−1·K−1) is mass thermal capacity, 
- λ (W·m−1·K−1) is thermal conductivity of material. 

For method by separating variables, we propose: 

( ) ( ) ( ) ( ), ,T x y t X x Y y Z t= ⋅ ⋅                    (3) 

(3) in (1) leads to following expressions: 
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Equations (5)-(7) are deduced from following relationships (8): 

( )2 2iω α β µ= +  with 2ii ωµ β
α
⋅

= +             (8) 

Solutions of preceding equations give:  

( ) ei tZ t a ω⋅ ⋅= ⋅                           (9) 

( ) 1 1cos sinX x a x b xβ β= ⋅ + ⋅                   (10)  

( ) 2 2cos sinY y a y b yµ µ= ⋅ + ⋅                   (11)  

which gives general expression of temperature through material in form: 

( ) ( )( )( )1 1 2 2, , cos sin cos sin ei tT x y t a x b x a y b y ωβ β µ µ ⋅ ⋅= ⋅ + ⋅ ⋅ + ⋅   (12) 

We apply to system boundary conditions, Equations (13)-(16), reflecting heat 
exchanges between faces of material and external environment:  
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Figure 1. Study model. 
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with: 

0 ei t
iT T ω⋅ ⋅= ⋅                            (17) 

 1
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=  and 4
4

hH
λ

=                       (18) 

iT  is the temperature imposed on the front face. 
We pose: 

 0 0 1X T k a= = ⋅                         (19) 

 ( )1 1 1 0b H a Xβ ⋅ = −                       (20) 

we obtain: 

 ( )1 1

1

1
 

b H k
a β

= −                         (21)   

 ( )1tan 1HH kβ
β

⋅ = −                      (22) 

4tan HLµ
µ

⋅ =                         (23) 

Graphical representations of Figure 2 and Figure 3 correspond to transcen-
dental Equation (22) and Equation (23) for obtaining eigenvalues mβ  and nµ  
respectively and given in Table 1. 
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Figure 2. Eigenvalues βm. 

 

 
Figure 3. Eigenvalues μn. 

 
Table 1. Positives eingenvalues: 2 1

1 4 0.5 W m Ch h − −= ⋅= ⋅  . 

n 1 2 3 4 5 6 7 8 9 0 11 

,n nµ β  (rad·m−1) 5 32 65 65 96 127 158 192 219 250 284 

 
Solution of equation of heat can thus be written: 

( ) ( )( )( )( )1, , cos 1 sin cos e mn t
mn m m m nm nT x y t A x H k x y ωβ β β µ ⋅= ⋅ ⋅ ⋅ ⋅+ −∑ ∑ (24) 

To explain the coefficient mnA , we pose:  

( ) ( )( )( )( )1, cos 1 sin cosmn m m m nm nF x y A x H k x yβ β β µ⋅ ⋅ ⋅= + −∑ ∑  (25) 

It can be written as: 

( ) ( )( )( )1, cos 1 sinm m m mmF x y B x H k xβ β β⋅ −⋅ ⋅= +∑        (26) 

with: 
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We replace mB  in (38) by its expression obtained by (37), we obtain: 
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We apply normalization condition (31): 

( ) ( )( )( )
( ) ( )

2

10

2

0

cos 1 sin d

cos d

H
m m m m

L
n n

N x H k x x

N y y

β β β β

µ µ

 = + −

 =

⋅



⋅

⋅

∫

∫
     (31) 

( ) ( ) ( )( )( )2
1 1

1 1 1
2m mN H H k H kβ β= + − + −          (32) 

( ) ( )
4

2 2
4

1
2n

n

HN L
H

µ
µ

 
 = +
 + 

                (33) 

We finally get: 
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Coefficient k is relative to the thermal effisitivity, it defines transmission of 
heat to wall of material: 0 1k≤ ≤ . 

k = 0: we have perfect thermal insulation behavior on surface of material; 
k = 1: we have perfect conductor behavior on surface of material. 
We worked with k = 0.85. 
Taking into account results obtained in previous studies [4] [5], we consider 

an average value of coefficient translating heat exchanges on surface of material: 
k = 0.85. 

3. Results and Discussion 

Solution (25) of heat equation made it possible to draw simulation curves of 
Figures 4-7 showing evolution of temperature inside material.  

Figure 4 shows evolution of temperature according depth inside material in 
frequency modulation. We have an accumulation of heat resulting in heating of 
material for x < 0.03 m there is no heat exchange on the lower face y = 0. For x > 
0.03 m, we have decrease in amplitude of temperature which tends at end of  
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Figure 4. Evolution of temperature according to depth. Ti = 10˚C, Te = 35˚C, λ = 0.174 
W·m−1·˚C−1, h1 = h4 = 0.5 W·m−2·˚C−1. 
 

 
Figure 5. Evolution of temperature along lateral axis. Ti = 10˚C, Te = 35˚C, λ = 0.174 
W·m−1·˚C−1, h1 = h4 = 0.5 W·m−2·˚C−1. 
 

 
Figure 6. Evolution of temperature according to depth. Influence of heat exchange coef-
ficient. Ti = 10˚C, Te = 35˚C, λ = 0.174 W·m−1·˚C−1, h4 = 0.5 W·m−2·˚C−1. 
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Figure 7. Evolution of temperature along lateral axis. Influence of heat exchange coeffi-
cient. Ti = 10˚C, Te = 35˚C, λ = 0.174 W·m−1·˚C−1, h4 = 0.5 W·m−2·˚C−1. 
 
excitation towards amplitude of initial temperature of material; material warms 
up slightly. 

Figure 5 shows evolution of temperature along lateral axis. Overheating phe-
nomenon in vicinity of y = 0 is confirmed because there is no heat exchange with 
respect to outside. Beyond y = 0.02 m, material temperature fluctuates around 
10˚C, which corresponds to low overheating of material. 

Figure 6 and Figure 7 show influence of heat exchange coefficient at front 
face on temperature. Exchange coefficient contributes significantly to heating of 
wall and propagation of heat along axis of depths. On other hand, along lateral 
axis, this influence is practically nil. 

4. Validation 

Methods of thermal characterization in numerical simulation [6] or analytical 
[7] [8] present results of evolutions of temperature and density of heat flux 
comparable through different materials. 

5. Conclusion 

Starting from resolution of equation of two-dimensional heat in frequency dy-
namic regime, we obtained curves which show thermal behavior of fibers ma-
terial subjected to different climatic constraints. Thermal insulating nature of 
material is highlighted by an evanescent tendency of external excitation inside 
material. 
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