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ABSTRACT 
 

This paper considers (in general form) the problem of recovering information (size and material 
parameters) about the scattering object from far-field measurements. The order of solution and 
functions of each equation for the fields inside and outside the scattering object are discussed. 
Using well-known mathematical theorems, a simple equation has been derived that connects the 
far-field data on one side to the near-field data on the other side. Consequently, this equation has 
been used in an optimization procedure to find the parameters of the dielectric cylinder. 
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1. INTRODUCTION  
 

If a set of functions and parameters defining the 
model is given, then the task of obtaining 
information about the state or properties of the 

model falls into the category of forward problems. 
In the opposite case, if some functions or 

parameters of the model are to be restored, then 
we are dealing with the inverse problem. The 
absence of an initial set of data, as well as 
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complete information about the model, can lead 

to a number of difficulties when solving inverse 
problems: the data may not be sufficient to 
ensure the uniqueness of the solution; quite 
often, the unknown function or parameter is 
included in the functional equation in a nonlinear 

way; the initial information is approximately 
known due to some errors in the measuring 
device; the solution of the inverse problem does 
not continuously depend on the initial data. In 

addition, it should be noted that the degree of 
complexity and the methods for solving forward 
and inverse problems are not equivalent, and 
that each problem requires special 
considerations. The rigorous mathematical 

foundations of the inverse problem theory were 
developed in the second half of the last century 
(the main results can be found in the monograph 
[1]), while there has been an interest regarding 

the inverse time-harmonic electromagnetic wave 
scattering problem, which has been intensively 
developed in the last three decades. The 
reasons for this time gap are due to the 

complexity of the combined system of electric 
and magnetic field equations, which necessitates 
the imposition of additional assumptions about 
the incident illumination and the nature of the 
scatterer, and the difficulties originating from the 

much more complicated regularity of the 
solutions of Maxwell’s equations are more 
theoretically robust than those of elliptic partial 
differential equations. Nevertheless, the 

development of computational techniques, as 
well as the relevance and importance of the 
electromagnetic wave backscattering problem, 
have stimulated significant progress in this 
problem over the past two decades. It is worth 

noting that the approach of using inverse wave 
scattering studies is non-intrusive to the object 
under study. To implement it, we only need to 
collect the scattered fields outside the object 

non-destructively. Therefore, it has a wide range 
of applications in various fields, such as radar 
and sonar imaging [2,3], geophysics [4], medical 
imaging [5], remote sensing [6], biomedical 
imaging and diagnostics [7]. 
 

Iterative methods are usually widely used to 

solve the inverse scattering problem (ISP). An 
iterative procedure employing equivalent 
Neumann series solutions in each iteration step 
was proposed in [8] to solve the two-dimensional 
inverse scattering problem. An iterative algorithm 

for reconstructing the three-dimensional 
complex-valued refractive index of an object was 
proposed in [9]. As a result of the conjugate 

gradient method in Ref. [10], the ISP was 

reformulated as an optimization problem, which 
was solved iteratively. Another popular method is 
the linear sampling method (LSM), which 
consists of solving the far-field integral equation 
for an unknown angular function of the far-field 

pattern [11,12]. The domain derivatives 
employed in [13] were used to solve the inverse 
electromagnetic scattering problem for perfect 
conductivity or penetrable obstacles. A 

variational approach targeting the interior 
transmission problem emerged from the 
proposed ISP study [14]. The reconstruction of 
the refractive index from experimental 
backscattering data using a globally convergent 

inverse method has been realized in [15]. 
Furthermore, it is worth noting that the so-called 
photonic nanojet discovered in this century [16] is 
an example of the successful revisiting of even 

well-known effects using modern computing 
techniques. In [17,18], it became clear that the 
solution of ISPs for objects capable of generating 
nanojets leads to new implemented practical 

applications. 
 

Although numerical methods seem to be more 

reliable and offer greater possibilities, semi-
analytical methods can provide a qualitative 
analysis of the final results and, in addition, 
control the accuracy of the results. The method 
used by us is a symbiosis of both approaches. 

By transforming the original equation into the 
difference between the modeled and measured 
scattered fields, we can determine any 
parameter based on the minimization conditions. 

As an illustration of the possibility of the 
developed optimization process, we found the 
parameters of the scatterer – radius and 
dielectric constant of the cylinder. The 

advantages of the presented approach are 
convenient and physically meaningful functional 
relations between near-field and far-field data, as 
well as controlled accuracy of the results.  
 

2. THE SOLUTION OF MAXWELL’S 

EQUATIONS FOR THE SCATTERED 

FIELD   
 
For TM polarized electromagnetic fields (nonzero 
electric Ez and magnetic Hx, Hy field 

components), Maxwell’s equations are 
transformed into Helmholtz equations for the 
electric field as   
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where k=2/,  is the wavelength and  is the 

dielectric permittivity. The cylinder is assumed to 
have the same permeability as free space. 
Introducing free space (=1) Green function 
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, H0
(2) is the zero-order 

Hankel function, c is the dielectric  permittivity of 

the cylinder. The next step is use the method 

developed in [19]. We divide the cross section of 
the dielectric cylinder into N cells so that the 

dielectric constant and the electric field intensity 
of each cell can be assumed to be constant. The 

integral equation (1) for the electric field is then 
transformed to the next equation: 
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where En and n denote electric field intensity and 

the dielectric constant at the  centre of cell  n, 

respectively, and 
22 )'()'( mm yyxx  . 

Replacing a cell with a circle having the same 

square, we obtain an exact solution for the 
integral over the Hankel function: 
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where  and  are the polar coordinates based 

on a coordinate origin at the centre of cell n, a is 

the radius of a circular cell, J1 denotes the Bessel 

function of the first order.  
 

Let us introduce notations for the left-hand side 

of (3) and (4): EL, HL,c and Ec, Hc,c for r


being 

outside and inside the cylindrical cross section C 

respectively.  Thus from (3) we have 2 equations: 
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where  i

LE and i

cE are expressed as the 

incident fields determined at the points lying 

along line placed at some fixed distance L from 

the cylinder and inside the cylinder respectively, 
and so-called contrast function: 
 

X=(n-1)Ec=p Ec 

 

has been introduced. It is worth mentioning that 
all quantities in (5-6) denoted by E are vectors, 

while the rest are matrices.  
 

Solving (6) for Ec and then using it in (5) we 

obtain 
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Eq. (7) actually represents the solution to the 
forward problem: for a given material parameter 
and sample size, we can calculate the scattered 

field. However, the solution to the inverse 
problem cannot be obtained automatically from 
(7). That is, if we assume that the scattered field 
is given, we can calculate X from (5) and then 

calculate Ec from (6), and the ratio X/Ec =p will 

yield the values of dielectric permittivity. The 
difficulty arises here in the first step. The matrix 
HL,c is ill-conditioned; therefore, it is not possible 

to calculate its inverse one, which is necessary 

for solving the inverse problem. We also note the 
nonlinear character of the equations with respect 
to the unknown contrast function X. The non-

symmetric (non-equivalent) form of the equations 

is another difficulty. In fact, the first equation 
contains only the unknown X within a definite 
integral, while both unknown functions X and Ec 

are presented in the second equation. Let us 
mention again that the inequality of these 

equations also manifests itself in the presence of 
a scattered field in only one of them. Namely, the 
scattered field is the data source (sometimes 
exclusively) used to find the solution. Hence, for 

the solution, several general recommendations 
should considered: Eq. (5) is the final point of the 
calculation, since it contains the initial data and 
any model and/or assumptions using  in the 
numerical procedure will eventually emerge here. 
Since the unknown X is within a definite integral, 

it is usually the case that any function up to 
constant is a solution of Eq. (5). Automatically, 
this will lead to solutions of Ec, and p, 

respectively. However, we cannot be sure that 
this is a real solution. Therefore, the form of the 
function X must be adequately chosen, and this 

can be done correctly using Eq. (6). Then, Eq. 

(5) is used to refine the parameters of the 
function X by minimizing the residuals.  
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According to Graf's theorem, the Hankel function can be expanded [20] to a sum of functions based 

on separate arguments:  
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Substituting (8) into (2) and multiplying both sides of (2) by exp(im) and integrating across the angle 

, we obtain the scattered field at a distance R from the centre of the cylinder: 
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After the summation of Eq. (9) in all m, we have  
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Despite the infinite interval of the summation, we 
can neglect contribution to the sum of terms with 
|m| > 20.  

 
Thus, on the left-hand side of (10), there exists 
only information about the fields inside the 

object, while the right-hand side is completely 
determined by the scattered field data. The 
equality of (10) can be used as a criterion for the 
adequacy of the model, as well as a basis for the 
development of different iterative schemes for 

inhomogeneous cases.  
 

3. OPTIMIZED DATA CALCULATION FOR 
SOLVING THE INVERSE SCATTERING 
PROBLEM  

 
Far-field measurements are the main initial data 
for the inverse electromagnetic scattering 
problem and are used to extract information 
about the object: size, shape, material 

parameters, etc. Eq. (10) can be used to 
calculate the dielectric constant for the known 
cylinder size, incident waveform and scattered 
field data. However, for practical purposes, we 
will make use of Eq. (9) as well. The fact is that 

the additional integration over the angle, leading 
from Eq.(9) to Eq.(10), smoothes the difference 
between the modeled and measured values, 
while that difference is an important criterion for 

choosing the optimal value. Therefore, to find the 
optimal parameters, we use Eq. (9). Since Eq. 
(9) is accurate, then it is approximately satisfied if 
the measured value is used instead of Ez(R,). 

Afterwards, to find the optimal parameters, we 
must require the minimum of the sum of the 
deviations for all values of m. As a result, the 

function to be minimized is shown as follows:  
 







m

mmc PLrF 2)(),(                        (11) 

 
where Lm and Pm are on the left and right sides of 

Eq. (9), respectively. Here, the dependence of 

the function F on the dielectric constant  and the 

radius of the cylinder rc as on the parameters are 

highlighted.  
 

A schematic representation of the considered 
scattering process is shown in Fig. 1. A plane 
wave irradiates a dielectric cylinder. The incident 
direction is chosen to be the x-axis. The 
scattered field is fixed along a circle of radius R 

around the cylinder. All distances in the present 
work are measured in units of wavelength.  
 

One of the important calculation parameters is 
the choice of the number of points N for which 
the internal field Ec is to be calculated (see (3-4)). 

Generally, the described procedure applies to 
any N, but it is obvious that for a sufficiently small 
N, the final result will lead to an insufficient value 

of . It is easily seen that as the radius increases, 

the minimum acceptable number of points also 
increases, which consequently leads to an 
increase in computation time. Here, we use 
rc=1.32.3, and x=0.04 as the distance between 

points. 
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The computational procedure is as follows. First, 
we calculate the internal field Ec according to 

Eq.(3,6). Then, for given values of c and rc, we 

calculate the scattered field EL. This field is the 

exact solution to the forward problem and is 
considered as the “measured” field. To simulate 

the solution of the inverse problem, we need to 
calculate the function F for the set of test values 

of the cylinder radius rc (or dielectric constant c) 

assuming a given c (or rc). Having calculated 

values of the scattered field for a number of 
dielectric constant (cylindrical radius) values, we 
then compare them with the actual measured 
values. To minimize random measurement 
errors, we actually calculate the standard 

deviation according to Eq. (11). As a result, the 
problem of determining n is reduced so as to 

find the minimum value of F among those 

computed for the given values of j. Comparing 

these values, we select the optimal value of 
dielectric constant . 
 

To examine the outlined procedure, we 
calculated F for different values of the refractive 
index n for the cylindrical radius rc =2. These 

dependencies depicted on Fig. 2 demonstrate 
the possibility of identifying  by comparing the 

modeled and measured field values. We also 
calculated F for different values of the cylindrical 

radius for dielectric constant =1.5 (Fig. 3). In this 

case, the chances of identifying the radius at a 
fixed  turn out to be higher: the additional 

minima, as can be seen, are quite far from being 

zero. That is, the comparison with the actual 
measured curve will lead to the optimal choice 
due to the use of the principle of minimum 
deviation according to (9). 

 
If there is not enough scattered field data, then 
the final result will certainly be wrong. Of course, 
more measurements can be taken, or more 
points can be simulated. However, the problem is 

to determine the minimum number of points 
required for a reliable solution to the inverse 
problem. Fig. 4 partially illustrates this problem. If 
we perform the calculation with only 20 points, 

then the function F will be far from vanishing. 
Moreover, F = 0 is realized only by increasing n. 

It should also be noted that the position of the 
minimum value of the function F remains 

unchanged. However, for practical cases, it will 

be necessary to consider measurement errors for 
other analyses. 
 

 

 

 

Fig. 1. Top view of the dielectric cylinder illuminated by a plane wave 
 

 

 

Fig. 2. Difference between modeled (n=nc) and simulated (for different n) scattered field 
amplitudes. (p=n2-1). r=2.0;  n: 1.5 - solid;  2.0 - dashed; 2.5 – dotted 
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Fig. 3. Difference between modeled (for r=rc) and simulated (for different r) scattered field 

amplitudes. =1.5; rc: 1.2 - solid; 1.5 - dashed; 2.3 – dotted 
 

 

 

Fig. 4. Difference between modeled and simulated scattered field amplitudes for different 
number of the measured data ns. n=1.5; r=2.0 

 

4. CONCLUSION 
 

The forward scattering problem is to compute the 

scattered field for a given scatterer size and 
material parameters. Correspondingly, the 
inverse scattering problem recovers the input 
data from the scattered field data. The material 
parameters, scatterer size, and initial data of the 

field can be considered as input data. In this 
paper, the possibility of recovering the dielectric 
constant and/or cylindrical radius from the 
scattered field data set has been considered. 

Using the equation that confines the near-field 
and far-field amplitudes, we have calculated the 
differences between the modeled and measured 
fields for a definite number of points. By requiring 
a summation minimum for all these deviations, 

we determined the optimal parameters for the 
sample. The procedure has been demonstrated 
for dielectric cylinders. Potentially, the proposed 
method is also suitable for determining the sizes 

of other objects.  
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