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ABSTRACT 
 

Previous laboratory work using a 0.12 M Epsom salt solution showed that HyPIR Electrolysis, or 
Hydrogen Production by Infrared Electrolysis, can increase the rate of hydrogen production from a 
solution of Epsom salt dissolved in water by irradiating the electrolyte with an optimum wavelength 
of light. This article presents data for a 0.25 M Epsom salt solution. A comparison of the data for 
different molarities shows that an increase in molarity of the electrolytic system decreases the rate 
of hydrogen production. 
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1. INTRODUCTION 
 
Widespread adoption of hydrogen as an energy 
carrier depends on our ability to supply hydrogen 
at a competitive price. A previous article 
described a process that increased hydrogen 
production rate by irradiating a 0.12 M Epsom 
salt-water electrolytic solution with light of an 
optimized wavelength [1,2] during electrolysis. 
The process was referred to as hydrogen 

production by infrared (HyPIR) electrolysis and is 
based on concepts reported in the literature 
[3,4,5]. Other electrolysis techniques include 
hydrogen production by green laser irradiation 
[6], hydrogen production by PEM electrolysis [7], 
hydrogen production by electrolysis powered by 
renewable energy [8], low temperature water 
electrolysis [9], alkaline water electrolysis in the 
presence of a magnetic field [10], and a solar-to 
hydrogen device based on earth-abundant 
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materials [11]. An alternative to hydrogen 
production by electrolysis is the production of 
hydrogen during sodium metal dissolution in 
concentrated aqueous Epsom salt solution [12]. 
Different technologies for the large-
of hydrogen are reviewed by Andersson and 
Grönkvist [13]. This article presents data for 
0.25 M Epsom salt solution and compares the 
data for different molarities. 
 

1.1 Experimental Procedure 
 

The experiment described by Fanchi
M Epsom salt-water solution. This experiment 
uses a 0.25 M Epsom salt-water solution. Fig. 1 
shows the HyPIR electrolysis apparatus used in 
this experiment. The Epsom salt (magnesium 
sulfate) solution in an electrolytic cell is 
electrolyzed with a copper anode to form copper 
sulfate, magnesium hydroxide, and hydrogen. 
The hydrogen is captured by a seal and forms a 
gas cap that increases the pressure in the cell. 
The increase in pressure is measured by a 
manometer. The rate of production of hydrogen 
gas is measured by recording the rate at which 
the fluid level rises in the manometer due to the 
pressure increase in the electrolytic cell. The 
experiment was conducted at room temperature.
 

The Erbium-YAG laser [14,15] selected for this 
experiment provides a beam of light with a 
wavelength of 2.94 microns. The Erbium
laser was chosen because the photon energy at 
this wavelength is readily absorbed by the 
symmetric stretch vibrational mode of water at 
2.734 microns wavelength and the asymmetric 
stretch vibrational mode of water at 2.662 
microns wavelength. These vibrational modes 
refer to the stretching of the hydrogen
bond in water. The laser beam provided 600 mJ 
 

Fig. 1. HyPIR Electrolysis apparatus (courtesy Fanchi Enterprises)
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stretching of the hydrogen-oxygen 
laser beam provided 600 mJ 

energy per pulse at a pulse rate of 4 Hz [
this article we compare HyPIR electrolysis results 
for two different molarities. 
 

1.2 Experimental Results 
 
Fig. 2 shows the results of HyPIR electrolysis for 
40 ml of a 0.25 M solution of Epsom salt in water. 
The experimental results show that the rate of 
change of fluid level (y in the regression 
equation) has a linear dependence on DC 
voltage (x in the regression equation) for the 
voltage range covered by the experiments. The 
slope of the lines represents the hydrogen 
production rate.  

 
The percent increase in hydrogen production rate 
is defined as 100% x (HIR - H0)/H
the rate of hydrogen production by electrolysis 
with the infrared laser beam, and H
hydrogen production by electrolysis without the 
laser. The percent increases in hydrogen 
production rate for a 0.12 M solution and a 0.25 
M solution are compared in Fig. 3. 

 
2. DISCUSSION 
 
Fig. 3 shows that the increase in molarity results 
in a decrease in hydrogen production rate 
associated with IR laser irradiation. The purpose 
of IR laser irradiation was to stretch the 
hydrogen-oxygen bond and make it easier to 
dissociate the hydrogen and oxygen atoms. The 
increase in molarity increases the presence of 
ions in solution and appears to decrease the 
effectiveness of IR laser irradiation. It should be 
noted that the increase in DC voltage in the 
electrolytic cell also appears to decrease         
the effectiveness of IR laser irradiation.
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Fig. 2. HyPIR Electrolysis Results for 0.25 M Epsom Salt Solution
 

Fig. 3. Comparison of Percent Increase in Hydrogen Production Rate for Two Molarities of 
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This work used Epsom salt (magnesium sulfate) 
to form the electrolyte. The products of the 
reaction with the copper electrode were 
hydrogen, copper sulfate, and magnesium 
hydroxide. The formation of copper sulfate 
consumed the copper electrode and formed a 
precipitate. These undesirable results can be 
eliminated by using an alkaline water electrolysis 
system [16-18] that does not consume the 
electrode and produces desirable byproducts. 
For example, use of potassium hydroxide (KOH) 
as the electrolyte creates an alkaline water 
system that does not interact with the copper 
electrode. Electrolysis with a KOH solution and a 
copper electrode can produce hydrogen gas and 
oxygen gas, two desirable products.  
 

3. CONCLUSIONS 
 

The results show that hydrogen production by 
infrared (HyPIR) electrolysis increases the rate of 
hydrogen production relative to the rate of 
hydrogen production without the laser. In this set 
of experiments, the increase in hydrogen 
production rate is greatest at low voltages and 
the increase is larger using a 0.12 M Epsom salt 
solution than a 0.25 M Epsom salt solution. 
 

The choice of electrolyte can have 
disadvantages. For example, the use of Epsom 
salt produces an undesirable byproduct (a 
precipitate) and consumes a copper electrode 
during the electrolytic process. Future work 
should attempt to remove these difficulties by 
identifying an alternative electrolytic system. 
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