
*Corresponding author: E-mail: venkatvedula2017@gmail.com, venkatvedula2012@gmail.com;

Current Journal of Applied Science and Technology

26(1): 1-14, 2018; Article no.CJAST.39546
Previously known as British Journal of Applied Science & Technology
ISSN: 2231-0843, NLM ID: 101664541

Efficient Association Rule Mining for Retrieving
Frequent Itemsets in Big Data Sets

Chandaka Babi1, Mandapati Venkateswara Rao1

and Vedula Venkateswara Rao2*

1
Gandhi Institute of Technology and Management (GITAM University), Visakhapatnam, India.

2Sri Vasavi Engineering College, Tadepalligudem, India.

Authors’ contributions

This work was carried out in collaboration between all authors. Author CB designed the study,
performed the problem analysis, wrote the algorithm, and wrote the first draft of the manuscript.

Author MVR managed the literature searches, algorithm design and author VVR managed the
analyses of the study, implementation and analysis of results. All authors read and approved the final

manuscript.

Article Information

DOI: 10.9734/CJAST/2018/39546

Editor(s):

(1) Hui Li, Associate Professor, School of Economics and Management, Zhejiang Normal University, China.

Reviewers:

(1) Parijit Kedia, Switzerland.

(2) Manish Mahajan, CGC College of Engineering, India.

Complete Peer review History: http://www.sciencedomain.org/review-history/23209

Received 22
nd

 November 2017
Accepted 2nd February 2018

Published 15
th

 February 2018

ABSTRACT

Information retrieval and decision-making demand a scalable and efficient methodto process and
extract relevant information from Big Data. Data mining is a refined analysis of a large quantity of
data to determine new information in the outline of patterns, trends, and relations. With the spread of
the World Wide Web, the quantity of data stored and made available electronically has increased
enormously, and methods to retrieve information from such big data have gained immense
significance for both business and scientific research communities. Frequent Itemset Mining is one
of the most extensively applied procedures to retrieve useful information from data. However, when
this method is applied to Big Data, the combinatorial outburst of candidate itemsets has become a
challenge. Recent developments in the area of parallel programming have offered outstanding tools
to overcome this problem. Nevertheless, these tools have their own technical drawbacks, e.g.
unbiased data sharing and inter-communication costs. In our study, we examine the applicability of
Frequent Itemset Mining in the MapReduce framework. We introduce a new method for

Original Research Article

Babi et al.; CJAST, 26(1): 1-14, 2018; Article no.CJAST.39546

2

extracting large datasets: Big-Frequent-ItemsetMining. This method is optimized to run on extremely
large datasets. Our approach is similar to FP-growth but uses a different data structure that is based
on an algebraic topology. In this study, we demonstrate the scalability of our techniques.

Keywords: Data mining; frequent itemsets; association rules; big data sets; frequent pattern mining;

map reduce.

1. INTRODUCTION

With the current progress in technology, science,
user habits, and businesses, a massive quantity
of data is being produced and stored. Therefore,
effective analysis of big data has become more
significant for both businesses and academics.
Frequent Itemset Mining is an important data
analysis and mining method [1]. This method
retrieves information from databases on the
basis of the frequency of occurrence of items in
the data, i.e., an event or a set of events, with
respect to a user-specified minimum frequency
threshold. Many methods have been developed
to extract databases based on the frequency of
events [2-4]. Although these methods work well
in practice for archetypal datasets, they are not
suitable for extremely Big Data. Therefore,
applying Frequent Itemset Mining to large
databases is difficult. Because very large
databases are not generally stored in main
memory, algorithms based on level-wise breadth-
first search is appropriate for data mining. The
Apriori algorithm [2] is one such scheme, where
frequency accumulation is achieved by reading
the dataset repeatedly for each size of the
candidate itemsets [5]. Unfortunately, the
extremely large memory required for managing
the large number of candidate itemsets makes
the Apriori-based schemes incompetent to be
applied on single machines. Recent approaches
tend to keep the output and runtime under
control by incrementing the minimum frequency
threshold, thereby reducing the number of
candidate and frequent itemsets. However,
research on recommendation systems has
revealed that itemsets with lower frequencies are
more desirable [6]. Hence, there is still a need for
methods that can retrieve data on the basis of
low frequency thresholds in Big Data. Parallel
programming is gaining importance to deal with
massive amounts of data [7]. Parallel
programming architectures and algorithms can
be classified into two major subcategories:
shared memory and distributed (shared nothing).
In shared memory systems, all processing units
use a shared memory area in tandem. In
contrast, the distributed systems consist of
processors that have their individual internal

memories and communicate with each other by
transmitting data through a network [8]. In
general, it is easier to adapt algorithms to the
shared-memory architecture; however, it is
typically not sufficiently scalable [8]. Through
Google’s MapReduce framework [9], which
simplifies the program for distributed data
dispensation, and the Apache Hadoop [10],
which renders the framework accessible to
everyone, distributed programming has been
gaining increasing acceptance [11]. In addition,
current viable and non-viable systems and
services advance the usability and accessibility
for anyone. In this study, we establish a new
algorithm that exploits the MapReduce
framework to process Big Data. Frequent Itemset
Mining for Big Data is optimized by using a
hybrid algorithm developed on the MapReduce
framework [12,13].

2. RELATED WORK

Since the beginning of research on data mining,
parallel processing methods have been in focus
[14]. There exist many parallel mining methods
as well as techniques to parallelize existing
sequential mining techniques. However, only a
few algorithms have been adapted for use in the
MapReduce framework. In this section, we
provide an overview of the data mining
algorithms.

2.1 Overview of Association Analysis

Among the various data mining techniques,
association analysis is a popular and well-
researched method and it extracts interesting
associations and relationships among variables
in large databases. For a pattern to be
interesting, it should be logical and actionable.
Association rule learning basically involves
determining relationships among attribute values
that occur frequently together in a dataset and
representing them in the form of association
rules. Association rules do not indicate causality,
but suggest strong co-occurrence relationships
that can be further investigated as associated
factors. Two important metrics in association
analysis are support and confidence [15,16].

Babi et al.; CJAST, 26(1): 1-14, 2018; Article no.CJAST.39546

3

Support indicates how often a rule is applicable
to a specific dataset and can be used to
eliminate uninteresting rules, such as those that
occur simply by chance [9,17]. Confidence
measures the reliability of the inference made by
a rule; for instance, X -> Y measures how
frequently items or attributes in Y appear in
transactions that contain X. Minimum support
and confidence thresholds are selected for
assessing the association rules extracted from
the data. An itemset is frequent if its support is
greater than or equal to the minimum support
value. One important issue with mining
association rules in large datasets is the fact that
it can be computationally expensive depending
on the algorithm used. A brute-force approach for
determining patterns from data involves
computing the support and confidence for every
possible rule. As the number of rules that can be
obtained from a dataset increases exponentially
with the number of items in that set, this brute-
force approach becomes prohibitively expensive.
This approach also results in wasted transactions
because many of the rules that fall below the
selected minimum support and confidence levels
would be discarded.

2.2 Apriori and FP-Growth Algorithms

Many algorithms for generating association rules
have been presented over time, such as the
Apriori and FP-Growth algorithms [3,18,19]. A
common strategy that these algorithms
implement, in terms of performance
improvement, is to decompose the problem into
two subtasks [20-22]:

a) Frequent itemset generation,
accomplished by reducing either the
number of (i) candidate itemsets on the
basis of the support measure, as in the
Apriori algorithm, or (ii) comparisons, as in
the FP-Growth algorithm;

b) Rule generation, which first excludes rules
that have empty antecedents or
consequents and then checks whether,
after splitting itemset Y into two non-empty
subsets (X and Y – X), rule X -> Y – X
satisfies the confidence threshold. Y – X in
this case is known as the rule consequent.
Rule generation does not require any
additional passes over the dataset.

2.3 Data Mining Algorithms on
MapReduce

Lin et al. proposed three algorithms that are
adaptations of Apriori on MapReduce [23]. These

algorithms distribute the dataset to mappers and
perform the frequency counting step in parallel.
Single-Pass Counting (SPC) utilizes a
MapReduce phase for each candidate
generation and frequency counting step. Fixed
Passes Combined-Counting generates
candidates with n different lengths after p
phases, where n and p are given as parameters,
and counts their frequencies in a single database
scan. Dynamic Passes Counting is similar to
FPC, but n and p are determined dynamically at
each phase by the number of generated
candidates [24,25]. The PApriori algorithm
proposed by Li et al. [26] works similar to SPC,
although they differ in minor implementation
details [27-29]. MRApriori [30] iteratively switches
between vertical and horizontal database layouts
for mining all frequent itemsets. At each iteration,
the database is partitioned and distributed across
mappers for frequency counting. Parallel FP-
Growth [31] is a parallel version of the well-
known FP-Growth [32]. PFP groups the items
and distributes their conditional databases to the
mappers [33]. Each mapper builds its
corresponding FP-tree and mines it
independently. The PARMA algorithm by
Riondato et al. [34] determines approximate
collections of frequent itemsets.

2.4 Hadoop Framework

Hadoop is a software framework for distributed
processing of large datasets across large
clusters of computers. The HadoopDistributed
File System (HDFS) was designed in the project
NUTCH to serve as the storage mechanism.
Input data are split into various chunks of default
size 64 MB and stored in the HDFS [35,36].

Hadoop consists of two main layers:

• Distributed file system (HDFS)
• Execution engine (MapReduce)

Fig. 1 shows the Hadoop architecture.

The HDFS has a block-oriented architecture.
Each block, called the data node, contains actual
data, has a fixed size, and is stored in the
Hadoop cluster. The data nodes are stored in
different machines at different clusters and a
dataset is processed in the same cluster where it
is stored. The HDFS follows the master–slave
architecture. Each Hadoop cluster contains a
single name node, which is the master node, and
data nodes, which are the slave nodes. The
primary communication mechanism between the

Babi et al.; CJAST, 26(1): 1-14, 2018; Article no.CJAST.39546

4

name node and data node is called heartbeat. In
every three seconds, a heartbeat containing the
block report and list of blocks in the data node is
sent to the name node from the data node. If a
heartbeat is not received, the name node will
create a replica of the data node. Fig. 2
describes the HDFS architecture [37].

Fig. 1. Hadoop architecture

Fig. 2. HDFS architecture

2.5 MapReduce

The MapReduce framework was introduced by
Google in 2004 to retrieve data efficiently from
large spectrum of data. MapReduce processes

the data as a key-value pair. The MapReduce
operation is performed in four phases. The first
phase is the mapper phase, where the data are
collected from the HDFS stored in different
clusters [38,39]. The output from the mapper
phase is the intermediate results, which are sent
to the next phase for passing them on to the
reducer. The second phase is the shuffle phase;
here, the intermediate results are shuffled so that
the results from different mappers are mixed.
The third phase is the sort phase. Here, the
shuffled intermediate results are sorted on the
basis of the key value such that the contents with
the same key value are brought together. The
sorted contents can be easily passed to the
reducer for processing. The last phase is the
reducer phase, where the sorted contents are
processed to yield the significant data. The jobs
in the Hadoop cluster are performed by the task
tracker. When a job is scheduled, the job tracker
will assign the job to the task tracker. It will then
proceed to the job execution and the output is
produced. Thus, the large amount of data is
processed into useful contents. Fig. 3 explains
the layers involved in MapReduce.

The functionality of MapReduce can be
explained by Fig. 4.

Fig. 3. Layers in the MapReduce framework

3. FREQUENT ITEMSET MINING ON

MAPREDUCE

We propose two new methods for mining
frequent itemsets in parallel on the MapReduce

Babi et al.; CJAST, 26(1): 1-14, 2018; Article no.CJAST.39546

5

framework, where frequency thresholds can be
set low. We introduce a second method, which is
a hybrid method that first uses an Apriori-based
method to extract frequent itemsets of length k
and subsequently switches to Eclat when the
projected databases fit into memory. First, mining
for k-FIs can already be infeasible [40]. Indeed,
in the worst case, one mapper needs the
complete dataset to construct all 2-FI pairs.
Considering Big Data, the tid-list of even a single
item may not fit into memory. Second, most of
the mappers require the whole dataset in
memory to mine the subtrees [41-43].

Fig. 4. Functionality of MapReduce

The following are the steps involved in the
proposed algorithm

1. Generating k-FIs: Frequency Itemset
Mining for Big Data covers the problem of
large tid-lists by generating k-FIs using the
breadth-first search method. This can be
achieved by adapting the Word Counting
problem for documents, i.e. each mapper
receives part of the database (a document)
and reports the items/itemsets (the words)
for which we want to know the support (the
count). A reducer combines all local
frequencies and reports only the globally
frequent items/itemsets. These frequent
itemsets can be redistributed to all
mappers to act as candidates for the next
step of breadth-first search. These steps
are repeated k times to obtain the set of k-
FIs.

2. Finding Potential Extensions: After
computing the prefixes, the next step is

computing the possible extensions, i.e.
obtaining tid-lists for (k+1)-FIs. This can be
performed similar to how Word Counting is
performed; however, in computing possible
extensions, instead of local support counts,
the local tid-lists are reported. A reducer
combines the local tid-lists from all
mappers to a single global tid-list and
assigns complete prefix groups to all the
mappers.

3. Subtree Mining: Finally, the mappers
work on individual prefix groups. A prefix
group defines a conditional database that
completely fits into memory. The mining
part then utilizes diffsets to mine the
conditional database for frequent itemsets
using depth-first search. The iterative
process is continued until a set of k-FIs
that are small enough is reached.

In our methods, frequent itemsets are mined in
step 3 by the mappers and then communicated
to the reducer. To reduce network traffic, we
encoded the mined itemsets using a compressed
trie string representation for each batch of
patterns.

The new algorithm for mining frequent itemsets
in Big Data sets is a modification of the original
FPTree algorithm and is described as follows.

Algorithm BigFPTree ():
Input: Big Data Set of Transactions
 Support
Output: Frequent Patterns
Begin
ConstructHeaderTable ()
FindOneFrequentItemSets ()
ProcessTransactionSets ()
End

Algorithm ConstructHeaderTable ()
Begin
Scan Dataset
Count support of each item
Construct Header Table (TH) by using Items and
their support
(Header Table Consists 3 fields name, support
and link)
Link refers to all nodes of an item on Tree
End

Algorithm FindOneFrequentItemSets ()
Begin
While (TH Not empty)
Do

Babi et al.; CJAST, 26(1): 1-14, 2018; Article no.CJAST.39546

6

Remove Items with support less than min
support from TH
Sort the TH based on support in descending
order
Done
End

Algorithm ProcessTransactionSets ()
Begin
Scan the Data set to create Transaction Item
Sets (TIS)
Remove the non-frequent Items from TIS
Sort TIS by order of Items in TH
Construct Tree (T) with Ordered Item Sets
Add new nodes to link field of TH
ProcessItem ()
End

Algorithm ProcessItem ()
Begin
Add Item Q into Base Item (BI)

In TH, Q.link contains all Nodes in Tree T whose
Item is Q
Read all Items from Node Ni i= 1 to k to root of T
Create SubHeaderTable (SHT) with items and
support
While (SHT Not empty)
Do
Remove items from SHT with support less than
min support
Sort SHT on support in descending order
Done
Read all Items from Ni to root
Remove non-local frequent Item Sets
Sort Item Sets by SHT
Construct new Sub Tree with sorted Item Sets
Add s to support keep all new nodes in link of
SHT
End

The flowchart presented in Fig.5 explains the
process of finding frequent itemsets in Big Data
sets

Fig. 5. Process for finding frequent itemsets in Big Data sets

Babi et al.; CJAST, 26(1): 1-14, 2018; Article no.CJAST.39546

7

4. EXPERIMENT RESULTS AND
ANALYSIS

We analyse the running time of algorithms on
both synthetic and real datasets. Our
experiments suggest independence of the
assignment method: using long prefixes results
in a better balancing of the load. Although
generating long prefixes requires additional initial
computation, for large databases, this
computation is negligible compared to the entire
mining process. Here, we consider two datasets
of different sizes and evaluate the generation of
association rules based on different parameters.

Fig. 6. shows the relation between support and
confidence in generating association rules.

Fig. 7 shows the mapper and reducer execution.

Figs. 8 and 9 show variation in the execution
time for different numbers of association rules for
dataset1 and dataset2, respectively.

Figs. 10 and 11 show the number of association
rules generated for dataset1 and dataset2,
respectively.

Figs.12 and 13 show the efficiency of BigFM and
Apriori algorithms for dataset1 and dataset2,
respectively, with different minimum support and
minimum confidence values.

Table 1 shows the results of BigFM and Apriori
on Big Data sets

Fig. 6. Support vs. confidence

Fig. 7. Mapper and reducer execution

Babi et al.; CJAST, 26(1): 1-14, 2018; Article no.CJAST.39546

8

Fig. 8. Number of association rules and time taken for execution for dataset1

Fig. 9. Number of association rules and time taken for execution for dataset2

Fig. 10. Number of association rules mined from dataset1

Babi et al.; CJAST, 26(1): 1-14, 2018; Article no.CJAST.39546

9

Fig. 11. Number of association rules mined from dataset2

Fig. 12. Mining efficiencies of BigFM and Apriori algorithm with differentmin_sup
and min_conf for dataset1

Fig. 13. Mining efficiencies of BigFM and Apriori algorithm with different min_sup and
min_conf for dataset 2

Babi et al.; CJAST, 26(1): 1-14, 2018; Article no.CJAST.39546

10

Fig. 14. Relationship between the number of generated itemsets and time

Fig. 15. Relationship between the number of transactions and time using BigFM.

Table 1. Results of BigFM Vs Apriori on Big Data Sets

Status #New

Transa-ctions

Transa-ctions BigFM Apriori

First run 10 10 0.51 0.17

Frequent run 10 20 0.53 0.42

Frequent run 50 70 0.91 1.88

Frequent run 200 270 1.13 3.61

Frequent run 400 670 1.30 5.00

Frequent run 600 1270 2.67 6.98

Frequent run 1200 2470 5.28 14.98

Average frequent run times 1.97 5.482

Decrease percentage 63.95%

Babi et al.; CJAST, 26(1): 1-14, 2018; Article no.CJAST.39546

11

Fig. 16. Number of different items versus total frequent itemsets

Fig. 17. Number of different itemsets for number of different items

Fig. 18. Number of different itemsets for number of different items

Babi et al.; CJAST, 26(1): 1-14, 2018; Article no.CJAST.39546

12

Fig. 16 describes the efficiency in terms of the
number of different items against the total
frequent itemsets.

5. CONCLUSION AND FUTURE WORK

The association rule generation or mining can be
performed effectively in distributed systems that
use parallel programing such as the Hadoop
framework. This is because this system can be
scaled up for large volumes of data and can
achieve high accuracy with less computation
time and cost. The proposed algorithm considers
the type of input data and can be applied to any
data formats. By dividing the input data into
many chunks of datasets and processing them
using different nodes, the execution is made
easy. Issues such as data transfer between
nodes, data storage, failure of a node and other
issues within the cluster are all handled by
Hadoop automatically. Thus, the proposed
system is highly efficient in terms of scalability
and robustness. The proposed algorithm for
association rule mining also has the same
features and is shown to be efficient. In addition,
because the key-value pair approach is used for
the processing, it is easier compared to existing
binomial approaches. However, the proposed
algorithm may not perform at its best in case of
extremely large datasets. Therefore, as a topic
for future research, use of Fuzzy-based
association rule mining in Hadoop can be
considered to handle extremely large data.
Furthermore, the input data are classified on the
basis of the support and confidence values
calculated using a suitable classification
algorithm. In future work, the algorithms can be
extended to implement feature selection using
information gain or mutual information before
implementing the association rule mining.

COMPETING INTERESTS

Authors have declared that no competing
interests exist.

REFERENCES

1. CheikhTidianeDieng, Tao-Yuan Jen,

Dominique Laurent, Nicolas Spyratos.
Mining frequent conjunctive queries using
functional and inclusion dependencies.
VLDB J. 2013;22(2):125 150.

2. Ayad Ibrahim, Hai Jin, Ali A. Yassin,
Deqing Zou. Towards privacy preserving
mining over distributed cloud databases. In

Proceedings of the 2nd International
Conference on Cloud and Green
Computing (CGC 2012), Xiangtan, Hunan,
China, IEEE Computer Society. 2012; 130-
136.

3. Fan Jiang, Carson Kai-Sang Leung.
Stream mining of frequent patterns from
delayed batches of uncertain data. In
Proceedings of the 15

th
 International

Conference on Data Warehousing and
Knowledge Discovery (DaWaK 2013),
Prague, Czech Republic, pages 209{221.
Springer-Verlag New York, Inc.; 2013.

4. Dean J, Ghemawat S. MapReduce:
Simplified data processing on large
clusters. In Proc. OSDI. USENIX
Association; 2004.

5. CheikhTidianeDieng, Tao-Yuan Jen,
Dominique Laurent. An effcient
computation of frequent queries in a star
schema. In Database and Expert Systems
Applications, 21th International
Conference, DEXA 2010, Bilbao, Spain,
August 30 - September 3, 2010,
Proceedings. 2010;Part II:225 239.

6. Markus Hegland. The apriori algorithm – a
Tutorial, CMA, Australian National
University, WSPC/Lecture Notes Series,
22-27, March 30; 2005.

7. Alfredo Cuzzocrea, Ladjel Bellatreche, Il-
Yeol Song. Data warehousing and olap
over big data: Current challenges and
future research directions. In Proceedings
of the 16th International Workshop on Data
Ware-housing and OLAP (DOLAP 2013),
San Francisco, California, USA, ACM,
2013;67-70.

8. Leila Ismail, Liren Zhang. Modeling and
performance analysis to predict the
behavior of a divisible load application in a
cloud computing environment. Algorithms.
5(2):289-303.

9. Alfredo Cuzzocrea, Carson Kai-Sang
Leung, Richard Kyle MacKinnon. Mining
constrained frequent itemsets from
distributed uncertain data. Future
Generation Computer Systems.
2014;37:117-126.

10. Bart Goethals, Dominique Laurent, Wim Le
Page, CheikhTidianeDieng. Mining
frequent conjunctive queries in relational
databases through dependency discovery.
Knowl. Inf. Syst. 2012;33(3):655 684.

11. dsonDela Cruz, Carson Kai-Sang Leung,
Fan Jiang. Mining `following' patterns from
big sparse social networks. In Proceedings
of the International Symposium on

Babi et al.; CJAST, 26(1): 1-14, 2018; Article no.CJAST.39546

13

Foundations and Applications of Big Data
Analytics (FAB 2016), San Francisco, CA,
USA. ACM. 2016;923-930.

12. Malu Castellanos, Chetan Gupta, Song
Wang, Umeshwar Dayal. Leveraging web
streams for contractual situational
awareness in operational BI. In
Proceedings of the 2010 International
Conference on Extending Database
Technology/International Conference on
Database Theory (EDBT/ICDT 2010)
Workshops, Lausanne, Switzerland, ACM.
2010;7:18.

13. Alfredo Cuzzocrea, Domenico Saccia,
Jefrerey D. Ullman. Big data: A research
agenda. In Proceedings of the 17th
International Database Engineering &
Applications Symposium (IDEAS 2013),
Barcelona, Spain, ACM. 2013;198-203.

14. Kun He, Yiwei Sun, David Bindel, John E.
Hopcroft, Yixuan Li. Detecting overlapping
communities from local spectral
subspaces. In 2015 IEEE International
Conference on Data Mining (ICDM 2015),
Atlantic City, NJ, USA. 2015;769-774.

15. Bart Goethals, Dominique Laurent, Wim Le
Page, Cheikh Tidiane Dieng. Mining
frequent conjunctive queries in relational
databases through dependency discovery.
Knowl. Inf. Syst. 2012;33(3):655 684.

16. Agrawal A, Choudhary A. Identifying
hotspots in lung cancer data using
association rule mining. 11th IEEE
International Conference on Data Mining
Workshops. 2011;995–1002.

17. Han J, Pei J, Yin Y. Mining frequent
patterns without candidate generation.
SIGMOD Rec. 2000;1–12.

18. Li J, Liu Y, Liao Wk, Choudhary A. Parallel
data mining algorithms for association
rules and clustering. In Intl. Conf. on
Management of Data; 2008.

19. Li N, Zeng L, He Q, Shi Z. Parallel
implementation of Apriori algorithm based
on MapReduce. In Proc. SNPD. 2012;
236–241.

20. Alfredo Cuzzocrea. CAMS: OLAPing
multidimensional data streams efficiently.
In Proceedings of the 11th International
Conference on Data Warehousing and
Knowledge Discovery (DaWaK 2009),
Linz, Austria, Springer Verlag. 2009; 48-
62.

21. Yifan Chen, Xiang Zhao, Xuemin Lin,
Yang Wang. Towards frequent subgraph
mining on single large uncertain graphs. In
2015 IEEE International Conference on

Data Mining (ICDM 2015), Atlantic City,NJ,
USA. 2015;41-50.

22. Jeferey Dean, Sanjay Ghemawat.
Mapreduce: Simplified data processing on
large clusters. Commun. ACM.
2008;51(1):107-113.

23. Anandhavalli M, Suraj Kumar Sudhanshu,
Ayush Kumar, Ghose MK. Optimized
association rule mining using genetic
algorithm. Advances in Information Mining.
2009;1(2):01-04.
ISSN:0975-3265,

24. Dongme Sun, Shaohua Teng, Wei Zhang,
Haibin Zhu. An algorithm to improve the
effectiveness of apriori. In Proc. Int‟l Conf.
on 6th IEEE Int‟l Conf. on Cognitive
Informatics (ICCI'07); 2007.

25. Zhou L, Zhong Z, Chang J, Li J, Huang J,
Feng S. Balanced parallel FP-Growth with
MapReduce. In Proc. YC-ICT. 2010;243–
246.

26. Mannila H, Toivonen H. Discovering
generalized episodes using minimal
occurrences. In Proc. of ACM Conference
on Knowledge Discovery and Data Mining
(SIGKDD). 1996;146–151.

27. Li H, Wang Y, Zhang D, Zhang M, Chang
EY. Pfp: Parallel fp-growth for query
recommendation. In Proc. RecSys. 2008;
107–114.

28. Lin MY, Lee PY, Hsueh SC. Apriori-based
frequent Itemset mining algorithms on
MapReduce. In Proc. ICUIMC, ACM. 2012;
26–30.

29. Malek M, Kadima H. Searching frequent
itemsets by clustering data: Towards a
parallel approach using mapreduce. In
Proc. WISE 2011 and 2012 Workshops,
Springer Berlin Heidelberg. 2013;251–258.

30. Mohammad El-Hajj, Osmar R. Zaiane.
Parallel bifold: Largescale parallel pattern
mining with constraints. Distributed and
Parallel Databases. 2006;20(3):225{243,

31. Fan Jiang, Carson Kai-Sang Leung,
Dacheng Liu, Aaron M. Peddle. Discovery
of really popular friends from social
networks. In Proceedings of the 4th IEEE
International Conference on Big Data and
Cloud Computing (BDCloud 2014),
Sydney, Australia. 2014;342-349.

32. Mohammad El-Hajj, Osmar R. Parallel
leap: Large-scale maximal pattern mining
in a distributed environment. In
Proceedings of the 12th International
Conference on Parallel and Distributed
Systems (ICPADS 2006), Minneapolis,
USA, IEEE. 2006;135-142.

Babi et al.; CJAST, 26(1): 1-14, 2018; Article no.CJAST.39546

14

33. Boley M, Grosskreutz H. Approximating
the number of frequent sets in dense data.
Knowl. Inf. Syst. 2009;65–89.

34. Zeng L, Li L, Duan L, Lu K, Shi Z, Wang M,
Wu W, Luo P. Distributed data mining: a
survey. Information Technology and
Management. 2012;403–409.

35. Apache hadoop; 2013.
Available:http://hadoop.apache.org/

36. Apache mahout; 2013.
Available:http://mahout.apache.org/

37. De Bie T. An information theoretic
framework for data mining. In Proc. ACM
SIGKDD. 2011;564–572.

38. Ekanayake J, Li H, Zhang B, Gunarathne
T, Bae SH, Qiu J, Fox G. Twister: A
runtime for iterative MapReduce. In Proc.
HPDC, ACM. 2010;810–818.

39. Finley K. 5 ways to tell which programming
languages are most popular Read Write;
2012.

Available:http://readwrite.com/2012/06/05/
5-ways-to-tell-whichprogramming-
lanugages-are-most-popular

40. Hammoud S. MapReduce network
enabled algorithms for classification
based on association rules. Thesis;
2011.

41. Geerts F, Goethals B, Bussche JVD. Tight
upper bounds on the number of candidate
patterns. ACM Trans. Database Syst.
2005;333–363.

42. Ghoting A, Kambadur P, Pednault E,
Kannan R. NIMBLE:a toolkit for the
implementation of parallel data mining and
machine learning algorithms on
mapreduce. In Proc. ACM SIGKDD, ACM.
2011;334–342.

43. Goethals B. Survey on frequent pattern
mining. Univ. of Helsinki; 2003.

© 2018 Babi et al.; This is an Open Access article distributed under the terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium,
provided the original work is properly cited.

Peer-review history:
The peer review history for this paper can be accessed here:

http://www.sciencedomain.org/review-history/23209

