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ABSTRACT 
 
Information retrieval and decision-making demand a scalable and efficient methodto process and 
extract relevant information from Big Data. Data mining is a refined analysis of a large quantity of 
data to determine new information in the outline of patterns, trends, and relations. With the spread of 
the World Wide Web, the quantity of data stored and made available electronically has increased 
enormously, and methods to retrieve information from such big data have gained immense 
significance for both business and scientific research communities. Frequent Itemset Mining is one 
of the most extensively applied procedures to retrieve useful information from data. However, when 
this method is applied to Big Data, the combinatorial outburst of candidate itemsets has become a 
challenge. Recent developments in the area of parallel programming have offered outstanding tools 
to overcome this problem. Nevertheless, these tools have their own technical drawbacks, e.g. 
unbiased data sharing and inter-communication costs. In our study, we examine the applicability of 
Frequent Itemset Mining in the MapReduce framework. We introduce a new method for       
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extracting large datasets: Big-Frequent-ItemsetMining. This method is optimized to run on extremely 
large datasets. Our approach is similar to FP-growth but uses a different data structure that is based 
on an algebraic topology. In this study, we demonstrate the scalability of our techniques. 
 

 
Keywords: Data mining; frequent itemsets; association rules; big data sets; frequent pattern mining; 

map reduce. 
 
1. INTRODUCTION 
 
With the current progress in technology, science, 
user habits, and businesses, a massive quantity 
of data is being produced and stored. Therefore, 
effective analysis of big data has become more 
significant for both businesses and academics. 
Frequent Itemset Mining is an important data 
analysis and mining method [1]. This method 
retrieves information from databases on the 
basis of the frequency of occurrence of items in 
the data, i.e., an event or a set of events, with 
respect to a user-specified minimum frequency 
threshold. Many methods have been developed 
to extract databases based on the frequency of 
events [2-4]. Although these methods work well 
in practice for archetypal datasets, they are not 
suitable for extremely Big Data. Therefore, 
applying Frequent Itemset Mining to large 
databases is difficult. Because very large 
databases are not generally stored in main 
memory, algorithms based on level-wise breadth-
first search is appropriate for data mining. The 
Apriori algorithm [2] is one such scheme, where 
frequency accumulation is achieved by reading 
the dataset repeatedly for each size of the 
candidate itemsets [5]. Unfortunately, the 
extremely large memory required for managing 
the large number of candidate itemsets makes 
the Apriori-based schemes incompetent to be 
applied on single machines. Recent approaches 
tend to keep the output and runtime under 
control by incrementing the minimum frequency 
threshold, thereby reducing the number of 
candidate and frequent itemsets. However, 
research on recommendation systems has 
revealed that itemsets with lower frequencies are 
more desirable [6]. Hence, there is still a need for 
methods that can retrieve data on the basis of 
low frequency thresholds in Big Data. Parallel 
programming is gaining importance to deal with 
massive amounts of data [7]. Parallel 
programming architectures and algorithms can 
be classified into two major subcategories: 
shared memory and distributed (shared nothing). 
In shared memory systems, all processing units 
use a shared memory area in tandem. In 
contrast, the distributed systems consist of 
processors that have their individual internal 

memories and communicate with each other by 
transmitting data through a network [8]. In 
general, it is easier to adapt algorithms to the 
shared-memory architecture; however, it is 
typically not sufficiently scalable [8]. Through 
Google’s MapReduce framework [9], which 
simplifies the program for distributed data 
dispensation, and the Apache Hadoop [10], 
which renders the framework accessible to 
everyone, distributed programming has been 
gaining increasing acceptance [11]. In addition, 
current viable and non-viable systems and 
services advance the usability and accessibility 
for anyone. In this study, we establish a new 
algorithm that exploits the MapReduce 
framework to process Big Data. Frequent Itemset 
Mining for Big Data is optimized by using a 
hybrid algorithm developed on the MapReduce 
framework [12,13].  
 

2. RELATED WORK 
 
Since the beginning of research on data mining, 
parallel processing methods have been in focus 
[14]. There exist many parallel mining methods 
as well as techniques to parallelize existing 
sequential mining techniques. However, only a 
few algorithms have been adapted for use in the 
MapReduce framework. In this section, we 
provide an overview of the data mining 
algorithms. 
 

2.1 Overview of Association Analysis 
 

Among the various data mining techniques, 
association analysis is a popular and well-
researched method and it extracts interesting 
associations and relationships among variables 
in large databases. For a pattern to be 
interesting, it should be logical and actionable. 
Association rule learning basically involves 
determining relationships among attribute values 
that occur frequently together in a dataset and 
representing them in the form of association 
rules. Association rules do not indicate causality, 
but suggest strong co-occurrence relationships 
that can be further investigated as associated 
factors. Two important metrics in association 
analysis are support and confidence [15,16]. 
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Support indicates how often a rule is applicable 
to a specific dataset and can be used to 
eliminate uninteresting rules, such as those that 
occur simply by chance [9,17]. Confidence 
measures the reliability of the inference made by 
a rule; for instance, X -> Y measures how 
frequently items or attributes in Y appear in 
transactions that contain X. Minimum support 
and confidence thresholds are selected for 
assessing the association rules extracted from 
the data. An itemset is frequent if its support is 
greater than or equal to the minimum support 
value. One important issue with mining 
association rules in large datasets is the fact that 
it can be computationally expensive depending 
on the algorithm used. A brute-force approach for 
determining patterns from data involves 
computing the support and confidence for every 
possible rule. As the number of rules that can be 
obtained from a dataset increases exponentially 
with the number of items in that set, this brute-
force approach becomes prohibitively expensive. 
This approach also results in wasted transactions 
because many of the rules that fall below the 
selected minimum support and confidence levels 
would be discarded. 
 

2.2 Apriori and FP-Growth Algorithms 
 

Many algorithms for generating association rules 
have been presented over time, such as the 
Apriori and FP-Growth algorithms [3,18,19]. A 
common strategy that these algorithms 
implement, in terms of performance 
improvement, is to decompose the problem into 
two subtasks [20-22]: 
 

a) Frequent itemset generation, 
accomplished by reducing either the 
number of (i) candidate itemsets on the 
basis of the support measure, as in the 
Apriori algorithm, or (ii) comparisons, as in 
the FP-Growth algorithm; 

b) Rule generation, which first excludes rules 
that have empty antecedents or 
consequents and then checks whether, 
after splitting itemset Y into two non-empty 
subsets (X and Y – X), rule X -> Y – X 
satisfies the confidence threshold. Y – X in 
this case is known as the rule consequent. 
Rule generation does not require any 
additional passes over the dataset. 

 

2.3 Data Mining Algorithms on 
MapReduce 

 

Lin et al. proposed three algorithms that are 
adaptations of Apriori on MapReduce [23]. These 

algorithms distribute the dataset to mappers and 
perform the frequency counting step in parallel. 
Single-Pass Counting (SPC) utilizes a 
MapReduce phase for each candidate 
generation and frequency counting step. Fixed 
Passes Combined-Counting generates 
candidates with n different lengths after p 
phases, where n and p are given as parameters, 
and counts their frequencies in a single database 
scan. Dynamic Passes Counting is similar to 
FPC, but n and p are determined dynamically at 
each phase by the number of generated 
candidates [24,25]. The PApriori algorithm 
proposed by Li et al. [26] works similar to SPC, 
although they differ in minor implementation 
details [27-29]. MRApriori [30] iteratively switches 
between vertical and horizontal database layouts 
for mining all frequent itemsets. At each iteration, 
the database is partitioned and distributed across 
mappers for frequency counting. Parallel FP-
Growth [31] is a parallel version of the well-
known FP-Growth [32]. PFP groups the items 
and distributes their conditional databases to the 
mappers [33]. Each mapper builds its 
corresponding FP-tree and mines it 
independently. The PARMA algorithm by 
Riondato et al. [34] determines approximate 
collections of frequent itemsets. 
 

2.4 Hadoop Framework 
 
Hadoop is a software framework for distributed 
processing of large datasets across large 
clusters of computers. The HadoopDistributed 
File System (HDFS) was designed in the project 
NUTCH to serve as the storage mechanism. 
Input data are split into various chunks of default 
size 64 MB and stored in the HDFS [35,36].  
 
Hadoop consists of two main layers:  
 

• Distributed file system (HDFS) 
• Execution engine (MapReduce) 

 

Fig. 1 shows the Hadoop architecture. 
 
The HDFS has a block-oriented architecture. 
Each block, called the data node, contains actual 
data, has a fixed size, and is stored in the 
Hadoop cluster. The data nodes are stored in 
different machines at different clusters and a 
dataset is processed in the same cluster where it 
is stored. The HDFS follows the master–slave 
architecture. Each Hadoop cluster contains a 
single name node, which is the master node, and 
data nodes, which are the slave nodes. The 
primary communication mechanism between the 
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name node and data node is called heartbeat. In 
every three seconds, a heartbeat containing the 
block report and list of blocks in the data node is 
sent to the name node from the data node. If a 
heartbeat is not received, the name node will 
create a replica of the data node. Fig. 2 
describes the HDFS architecture [37]. 
 

 
 

Fig. 1. Hadoop architecture 
 

 
 

Fig. 2. HDFS architecture 
 

2.5 MapReduce 
 

The MapReduce framework was introduced by 
Google in 2004 to retrieve data efficiently from 
large spectrum of data. MapReduce processes 

the data as a key-value pair. The MapReduce 
operation is performed in four phases. The first 
phase is the mapper phase, where the data are 
collected from the HDFS stored in different 
clusters [38,39]. The output from the mapper 
phase is the intermediate results, which are sent 
to the next phase for passing them on to the 
reducer. The second phase is the shuffle phase; 
here, the intermediate results are shuffled so that 
the results from different mappers are mixed. 
The third phase is the sort phase. Here, the 
shuffled intermediate results are sorted on the 
basis of the key value such that the contents with 
the same key value are brought together. The 
sorted contents can be easily passed to the 
reducer for processing. The last phase is the 
reducer phase, where the sorted contents are 
processed to yield the significant data. The jobs 
in the Hadoop cluster are performed by the task 
tracker. When a job is scheduled, the job tracker 
will assign the job to the task tracker. It will then 
proceed to the job execution and the output is 
produced. Thus, the large amount of data is 
processed into useful contents. Fig. 3 explains 
the layers involved in MapReduce. 
 
The functionality of MapReduce can be 
explained by Fig. 4. 
 

 
 

Fig. 3. Layers in the MapReduce framework 
 
3. FREQUENT ITEMSET MINING ON 

MAPREDUCE 
 
We propose two new methods for mining 
frequent itemsets in parallel on the MapReduce 
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framework, where frequency thresholds can be 
set low. We introduce a second method, which is 
a hybrid method that first uses an Apriori-based 
method to extract frequent itemsets of length k 
and subsequently switches to Eclat when the 
projected databases fit into memory. First, mining 
for k-FIs can already be infeasible [40]. Indeed, 
in the worst case, one mapper needs the 
complete dataset to construct all 2-FI pairs. 
Considering Big Data, the tid-list of even a single 
item may not fit into memory. Second, most of 
the mappers require the whole dataset in 
memory to mine the subtrees [41-43]. 
 

 
 

Fig. 4. Functionality of MapReduce 
 
The following are the steps involved in the 
proposed algorithm 
 

1. Generating k-FIs: Frequency Itemset 
Mining for Big Data covers the problem of 
large tid-lists by generating k-FIs using the 
breadth-first search method. This can be 
achieved by adapting the Word Counting 
problem for documents, i.e. each mapper 
receives part of the database (a document) 
and reports the items/itemsets (the words) 
for which we want to know the support (the 
count). A reducer combines all local 
frequencies and reports only the globally 
frequent items/itemsets. These frequent 
itemsets can be redistributed to all 
mappers to act as candidates for the next 
step of breadth-first search. These steps 
are repeated k times to obtain the set of k-
FIs. 

2. Finding Potential Extensions: After 
computing the prefixes, the next step is 

computing the possible extensions, i.e. 
obtaining tid-lists for (k+1)-FIs. This can be 
performed similar to how Word Counting is 
performed; however, in computing possible 
extensions, instead of local support counts, 
the local tid-lists are reported. A reducer 
combines the local tid-lists from all 
mappers to a single global tid-list and 
assigns complete prefix groups to all the 
mappers. 

3. Subtree Mining: Finally, the mappers 
work on individual prefix groups. A prefix 
group defines a conditional database that 
completely fits into memory. The mining 
part then utilizes diffsets to mine the 
conditional database for frequent itemsets 
using depth-first search. The iterative 
process is continued until a set of k-FIs 
that are small enough is reached. 

 
In our methods, frequent itemsets are mined in 
step 3 by the mappers and then communicated 
to the reducer. To reduce network traffic, we 
encoded the mined itemsets using a compressed 
trie string representation for each batch of 
patterns. 

 
The new algorithm for mining frequent itemsets 
in Big Data sets is a modification of the original 
FPTree algorithm and is described as follows. 

 
Algorithm BigFPTree (): 
Input: Big Data Set of Transactions 
 Support 
Output: Frequent Patterns 
Begin 
ConstructHeaderTable () 
FindOneFrequentItemSets () 
ProcessTransactionSets () 
End 

 
Algorithm ConstructHeaderTable () 
Begin 
Scan Dataset 
Count support of each item 
Construct Header Table (TH) by using Items and 
their support 
(Header Table Consists 3 fields name, support 
and link) 
Link refers to all nodes of an item on Tree 
End 

 
Algorithm FindOneFrequentItemSets () 
Begin 
While (TH Not empty) 
Do 
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Remove Items with support less than min 
support from TH 
Sort the TH based on support in descending 
order 
Done  
End 
 
Algorithm ProcessTransactionSets () 
Begin 
Scan the Data set to create Transaction Item 
Sets (TIS) 
Remove the non-frequent Items from TIS 
Sort TIS by order of Items in TH 
Construct Tree (T) with Ordered Item Sets 
Add new nodes to link field of TH 
ProcessItem () 
End 
 
Algorithm ProcessItem () 
Begin 
Add Item Q into Base Item (BI) 

In TH, Q.link contains all Nodes in Tree T whose 
Item is Q 
Read all Items from Node Ni i= 1 to k to root of T 
Create SubHeaderTable (SHT) with items and 
support 
While (SHT Not empty) 
Do 
Remove items from SHT with support less than 
min support 
Sort SHT on support in descending order 
Done 
Read all Items from Ni to root 
Remove non-local frequent Item Sets 
Sort Item Sets by SHT 
Construct new Sub Tree with sorted Item Sets 
Add s to support keep all new nodes in link of 
SHT 
End 
 

The flowchart presented in Fig.5 explains the 
process of finding frequent itemsets in Big Data 
sets 

 

 
 

Fig. 5. Process for finding frequent itemsets in Big Data sets 
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4. EXPERIMENT RESULTS AND 
ANALYSIS 

 
We analyse the running time of algorithms on 
both synthetic and real datasets. Our 
experiments suggest independence of the 
assignment method: using long prefixes results 
in a better balancing of the load. Although 
generating long prefixes requires additional initial 
computation, for large databases, this 
computation is negligible compared to the entire 
mining process. Here, we consider two datasets 
of different sizes and evaluate the generation of 
association rules based on different parameters. 
 
Fig. 6. shows the relation between support and 
confidence in generating association rules. 
 

Fig. 7 shows the mapper and reducer execution. 
 
Figs. 8 and 9 show variation in the execution 
time for different numbers of association rules for 
dataset1 and dataset2, respectively. 
 
Figs. 10 and 11 show the number of association 
rules generated for dataset1 and dataset2, 
respectively. 
 
Figs.12 and 13 show the efficiency of BigFM and 
Apriori algorithms for dataset1 and dataset2, 
respectively, with different minimum support and 
minimum confidence values. 
 
Table 1 shows the results of BigFM and Apriori 
on Big Data sets 

 
 

Fig. 6. Support vs. confidence 
 

 
 

Fig. 7. Mapper and reducer execution 
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Fig. 8. Number of association rules and time taken for execution for dataset1 
 

 
 

Fig. 9. Number of association rules and time taken for execution for dataset2 
 

 
 

Fig. 10. Number of association rules mined from dataset1 
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Fig. 11. Number of association rules mined from dataset2 
 

 
 

Fig. 12. Mining efficiencies of BigFM and Apriori algorithm with differentmin_sup 
and min_conf for dataset1 

 

 
 

Fig. 13. Mining efficiencies of BigFM and Apriori algorithm with different min_sup and 
min_conf for dataset 2 
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Fig. 14. Relationship between the number of generated itemsets and time 
 

 
 

Fig. 15. Relationship between the number of transactions and time using BigFM. 
 

Table 1. Results of BigFM Vs Apriori on Big Data Sets 
 

Status #New 

Transa-ctions 

# Transa-ctions BigFM Apriori 

First run 10 10 0.51 0.17 

Frequent run 10 20 0.53 0.42 

Frequent run 50 70 0.91 1.88 

Frequent run 200 270 1.13 3.61 

Frequent run 400 670 1.30 5.00 

Frequent run 600 1270 2.67 6.98 

Frequent run 1200 2470 5.28 14.98 

Average frequent run times 1.97 5.482 

Decrease percentage 63.95% 
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Fig. 16. Number of different items versus total frequent itemsets 
 

 
 

Fig. 17. Number of different itemsets for number of different items 
 

 
 

Fig. 18. Number of different itemsets for number of different items 
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Fig. 16 describes the efficiency in terms of the 
number of different items against the total 
frequent itemsets. 

 
5. CONCLUSION AND FUTURE WORK 
 
The association rule generation or mining can be 
performed effectively in distributed systems that 
use parallel programing such as the Hadoop 
framework. This is because this system can be 
scaled up for large volumes of data and can 
achieve high accuracy with less computation 
time and cost. The proposed algorithm considers 
the type of input data and can be applied to any 
data formats. By dividing the input data into 
many chunks of datasets and processing them 
using different nodes, the execution is made 
easy. Issues such as data transfer between 
nodes, data storage, failure of a node and other 
issues within the cluster are all handled by 
Hadoop automatically. Thus, the proposed 
system is highly efficient in terms of scalability 
and robustness. The proposed algorithm for 
association rule mining also has the same 
features and is shown to be efficient. In addition, 
because the key-value pair approach is used for 
the processing, it is easier compared to existing 
binomial approaches. However, the proposed 
algorithm may not perform at its best in case of 
extremely large datasets. Therefore, as a topic 
for future research, use of Fuzzy-based 
association rule mining in Hadoop can be 
considered to handle extremely large data. 
Furthermore, the input data are classified on the 
basis of the support and confidence values 
calculated using a suitable classification 
algorithm. In future work, the algorithms can be 
extended to implement feature selection using 
information gain or mutual information before 
implementing the association rule mining.  
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