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ABSTRACT

We study a dynamic model describing the cooperation-competition between two species, where
the first species diffuses along a smooth distribution function while the second is dispersive
randomly. The analysis is designed for weak competition with corresponding coefficients and by
considering different resource functions. It is shown that the directed diffusion population has
evolutionary advantages to design its own niche. The higher carrying capacity is an important
issue of persistence. If there is a combination of two strategies adopted by the two species then
the ideal free distribution is attained and the coexistence steady state is a global attractor.
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1 INTRODUCTION
Mathematical modeling is always an important
tool in economy and ecology to describe
the characteristic life of populations in nature
to scientific structures. Instantaneously, for
example, the mathematical model used to
describe some favorite features to predict the
dynamics of

• competition

• cooperation

• mutualistic relation, and

• predator-prey interactions.

At present time and in the past two decades,
the reaction-diffusion model including standard
dispersion was considered in the literature
[1, 2, 3, 4, 5, 6, 7] and references therein.
One essential and important observation is
that the slowest diffuser is the sole winner in
competition and become a justification of the
standard dispersion and was established in
[3]. Crowdiness effects are another important
issue for Lotka type models and were studied
in [4]. A nonlinear system of initial boundary
value problem was considered in [5]; and they
investigated the solutions of a predator-prey
model that generally covered a wide class of
reaction-diffusion equations.

In this paper, we consider a problem of
two interacting species competing in a non-
homogeneous habitat for the fundamental
resources such as

• water and food

• shelter and territory

• light or any means to maintain life and
reproduce.

The diffusion script of the system is dissimilar
for each resident. The diffusion motion of one
population is influenced by a distribution function
introduced in [8] while the other one is dispersing
classically.

The notion of the ideal free distribution from
ecology distinguishes how animals optimally
distribute themselves crosswise the habitats.
Generally, regular dispersal strategies cannot
conduct to achieve the ideal free distribution
in a spatially heterogeneous environment.

The environmental gradient corresponds to
the reaction-diffusion-advection model with the
combination of directed and regular movement
and was studied in [2, 9, 10, 11]. For a particular
dynamical system when the ratio of the diffusion
and the advection coefficients tends to zero then
for such problem the solutions tend to be ideally
distributed. If there is any movement of ideally
distributed populations, the system will decrease
the total fitness of traveling polls. An ideal free
distribution can be gained for a measurable rate
of advection in the pattern considered by [9] and
recently this result was explored and upgraded
by [10]. One important target of this paper is to
develop the ideal free solution by considering a
system with divergent diffusion strategies. It is
noted that the following diffusion model (1.1) was
studied in [12].

In the present work, the model is defined
in the following way: out of two diffusion
strategies, the first population is diffusing with
the positive distribution P (x) while the other
species is diffusing classically (randomly).
Considering different carrying capacities of the
two species, the system is governing by the
following equations with homogeneous Neumann
boundary conditions:

∂u
∂t

= d1∆

(
u(t, x)
P (x)

)
+ u(t, x) (K1(x) − u(t, x) − µv(t, x)) ,

t > 0, x ∈ Ω,
∂v
∂t

= d2∇ · ∇v(t,x)
P (x)

+ v(t, x) (K2(x) − νu(t, x) − v(t, x)) ,

t > 0, x ∈ Ω,
∂(u/P )
∂n

= ∂v
∂n

= 0, x ∈ ∂Ω,

u(t0, x) = u0(x), v(t0, x) = v0(x), x ∈ Ω.

(1.1)

For carrying capacities K1(x) and K2(x), we
assume that either K1(x) ̸≡ K2(x) on a
nonempty open domain or K1(x) ≡ K2(x) for
any x ∈ Ω and both are positive. The functions
u(t, x) and v(t, x) represent the densities of
the two competing species with corresponding
diffusion rates d1 > 0 and d2 > 0. Here
Ω is a bounded smooth domain in Rn with
boundary ∂Ω. The constants µ, ν account
for competitive interactions between two species.
We also assume that u(t0, x) and v(t0, x) are
smooth enough, non-negative and not identically
zero in Ω. The function P (x) is in the class
of C1+α(Ω), α > 0. We have two important
assumptions throughout the paper:

1. Distribution function, P (x) ̸≡ const and is
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smooth enough.

2. Competition coefficients µ ∈ (0, 1] and
ν ∈ (0, 1].

Shortly, we summarize some important results for
this type of model (1.1) studied recently in the
literatures [13, 14, 15].

1. If µ = ν = 1 and P (x) ≡ K1(x) ≡
K2(x), the steady state (K(x), 0) of
(1.1) is globally asymptotically stable
[13, 14], where a system of equation
was investigated for logistic type growth
[13] as well as for variety of growth
laws [14]. Here K(x) is the common
carrying capacity of both species. In a
heterogeneous environment, it is shown
that the species distributed by the carrying
capacity only survives.

2. If µ = ν = 1, P (x) ≡ K1(x) ̸≡
K2(x) and K1(x) > K2(x) in a
nonempty open sub-domain, the semi-
trivial equilibrium (K1(x), 0) of (1.1) is
globally asymptotically stable [15] for
multiple growth functions. It is proven
that the population assigned with higher
carrying capacity is in advantageous
situation.

When the movement of both species is affected
according to the distribution functions then that
type of model was considered in [16, 17].
They established the competitive exclusion of
one species by the other and the cooperative
scenarios between two populations due to the
effect of competition coefficients, the influence of
diffusion coefficients and intrinsic growth rates.

Out of many issues, the key ideas due to the
following novelties in this paper:

• We consider the problem describe in
(1.1) to show the effects of constant
competition coefficients for rational and
arbitrary functions.

• For unique competition coefficients,
diversity of diffusion strategies provide
ideal free solution for non-proportional
carrying capacity and distribution function.

• In the reaction parts, the characterization
K1(x) ̸≡ K2(x) is referred to as the

crowdiness effect, where the two species
have similar physical attributes.

• At the end, we outline the effects of space-
variable interactions for further research.

The paper is organized in the following way. In
section 2, we establish some preliminary results
for single species and for a couple of species and
these will be used in the rest of the part. The
global analysis of equilibria are investigated in
section 3 for competition coefficients µ ≤ 1 and
ν ≤ 1.

Here we construct the following results:

1. If µ = ν = 1 and K(x) ≡ αP (x) +
β
∫
Ω

P (x) dx then there exists a unique

ideal free distribution (αP (x), β
∫
Ω

P (x) dx)

which is stable for arbitrary diffusion
coefficients.

2. Including other assumptions as above, if
µ, ν ∈ (0, 1) then the system (1.1) has a
stable coexistence solution.

3. For arbitrary P (x) and K(x), if µ ∈
(0, µ∗), ν ∈ (0, ν∗) then the problem
(1.1) has at least one coexistence
solution (us(x), vs(x) independently of the
diffusion coefficients.

4. The system (1.1) has a stable coexistence
solution if the deviation between two
resource functions is bounded and very
small.

Section 4 deals with the effects of crowding
tolerance. This segment illustrates the dynamics
for different distributions of P (x), K1(x) and
K2(x) with µ = ν = 1. If the ratio of P (x) and
K1(x) is a positive constant and K1(x) ≥ K2(x)
in a nonempty open domain then the semi-trivial
equilibrium (u∗(x), 0) is globally asymptotically
stable.

Finally, section 5 presents summary of the
results and we introduce the spatially distributed
competition coefficients and edited the problem
(1.1) for further research. In that case, we
establish some results by considering µ(x) ≡
K(x)−P (x)

Q(x)
> 0 and ν(x) ≡ K(x)−Q(x)

P (x)
> 0 and

d1 ̸= d2.
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2 PRELIMINARIES
Several next results correspond to the stationary solution of the monotone dynamical system (1.1)
considering the case of single-species.

We assume that the function u∗(x) is the unique solution of the following single-species boundary
value problem (BVP) when the species v is identically equal to zero in (1.1)

d1∆

(
u∗(x)

P (x)

)
+ u∗(x) (K1(x)− u∗(x)) = 0, x ∈ Ω,

∂(u∗/P )

∂n
= 0, x ∈ ∂Ω. (2.1)

Proposition 2.1. [13, 14, 17] Let K1(x) ̸≡ const and if P (x) and K1(x) are linearly independent then∫
Ω

P (x) (u∗(x)−K1(x)) dx = d1

∫
Ω

|∇(u∗/P )|2

(u∗/P )2
dx > 0. (2.2)

and ∫
Ω

K1(x)(K1(x)− u∗(x)) dx > 0. (2.3)

Similarly, for single-species v, let us assume that v∗(x) is the unique positive solution of the equation

d2∇ · ∇v
∗(x)

P (x)
+ v∗(x) (K2(x)− v∗(x)) = 0, x ∈ Ω,

∂v∗

∂n
= 0, x ∈ ∂Ω. (2.4)

The result of the following can be justified similarly to Proposition 2.1.

Proposition 2.2. Suppose that K2(x) ̸≡ const, P (x) and K2(x) are linearly independent and v∗(x)
is a positive solution of (2.4) then∫

Ω

(v∗(x)−K2(x)) dx =

∫
Ω

d2
P (x)

|∇v∗(x)|2

v∗2(x)
dx > 0. (2.5)

and ∫
Ω

K2(x)(K2(x)− v∗(x)) dx > 0. (2.6)

Proof. Since v∗ > 0, dividing the first equation of (2.4) by v∗, we obtain

d2
∇ · ∇v∗(x)

P (x)

v∗
+ (K2(x)− v∗(x)) = 0, x ∈ Ω,

∂v∗

∂n
= 0, x ∈ ∂Ω. (2.7)

Integrating (2.7) over the domain Ω using boundary conditions in (2.7), we have

d2

∫
Ω

|∇v∗|2

P (x)v∗2
dx+

∫
Ω

(K2(x)− v∗(x)) dx = 0. (2.8)

Therefore, ∫
Ω

(v∗(x)−K2(x)) dx =

∫
Ω

d2
P (x)

|∇v∗|2

v∗2
dx > 0, unless v∗(x) = const. (2.9)

But v∗ = const is not a solution of (2.4) as long as K2(x) ̸≡ const.

The second part of the proof can be established by directly integrating the equation of v in (2.4) and
hence the details proof is omitted.
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The instability of trivial equilibrium was shown in the following result.

Lemma 2.1. [13, 14, 15] The zero solution (0, 0) of (1.1) is unstable and its a repeller.

Proposition 2.3. Assume that (us(x), vs(x) is a strictly positive stationary solution of (1.1), K1(x) ≡
K(x) ≡ K2(x) and µ, ν ∈ (0, 1]. Then∫

Ω

K(x) (K(x)− νus − µvs) dx ≥
∫
Ω

(νus + µvs −K)2 dx, (2.10)

where equality is attained in (2.10) only when µ = ν = 1. The inequality (2.10) is strictly positive
unless νus(x) + µvs(x) ≡ K(x).

Proof. Assume that there exists a stationary positive solution (us(x), vs(x)) and the equilibrium
(us(x), vs(x)) of (1.1) satisfies

d1∆

(
us(x)
P (x)

)
+ us(x) (K(x)− us(x)− µvs(x)) = 0, x ∈ Ω,

d2∇ ·
(

∇vs(x)
P (x)

)
+ vs(x) (K(x)− νus(x)− vs(x)) = 0, x ∈ Ω,

∂(us/P )
∂n

= ∂vs
∂n

= 0, x ∈ ∂Ω.

(2.11)

Multiplying the first equation of (2.11) by ν, second by µ adding them and integrating over Ω using the
boundary conditions, we obtain

0 =

∫
Ω

[
K(x)(νus + µvs)−

(
νu2

s + µv2s + 2νµusvs
)]
dx

≤
∫
Ω

[
K(x)(νus + µvs)−

(
ν2u2

s + µ2v2s + 2µνusvs
)]
dx, since ν ≤ 1, µ ≤ 1

=

∫
Ω

[
K(x)(νus + µvs)− (νus + µvs)

2] dx =

∫
Ω

(νus + µvs) (K(x)− νus − µvs) dx.

It follows that ∫
Ω

(νus + µvs) (K(x)− νus − µvs) dx ≥ 0. (2.12)

Integrating both sides of (νus + µvs) (K(x)− νus − µvs) = (νus + µvs −K(x)) (K(x)− νus − µvs)
+K(x) (K(x)− νus − µvs) over Ω yields the following integral∫

Ω

K(x) (K(x)− νus − µvs) dx ≥
∫
Ω

(νus + µvs −K)2 dx > 0. (2.13)

Here equality holds if µ = ν = 1 and then (2.13) is valid unless νus(x) + µvs(x) ≡ K(x).

3 GLOBAL ANALYSIS OF STEADY STATES
When only one population survives, we will state the results on stability of two semi-trivial equilibrium
of (1.1), which are (u∗(x), 0), (0, v∗(x)). The stationary solution (us(x), vs(x)), if it exists, that is
neither a trivial nor a semi-trivial equilibrium and satisfy the positivity us > 0, vs > 0, then we have a
coexistence solution.
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Let us nominating

Ic := α

∫
Ω

P (x) dx > 0, α > 0, (3.1)

and we will use this notation in further study.

If (us(x), vs(x)) is any stationary coexistence solution of (1.1) and K2(x) ≡ K(x) then the eigenvalue
problem of the second equation of (1.1) around (u∗(x), 0) is

d2∇ · ∇ϕ(x)
P (x)

+ ϕ(x) (K(x)− νu∗(x)) = σϕ(x), x ∈ Ω,
∂ϕ

∂n
= 0, x ∈ ∂Ω. (3.2)

3.1 Case of Identical Resource Function: K1 ≡ K(x) ≡ K2

Let us now explore the results for the case of equivalent carrying capacity. If the distribution function
P (x) is proportional to the carrying capacity K(x) then we have the following result as a remark.

Remark 3.1. Suppose that K1(x) ≡ K(x) ≡ K2(x) ̸≡ const, P (x)/K(x) ≡ const and µ = ν = 1.
Then the steady state (u∗(x), 0) of (1.1) is globally asymptotically stable.

In the following section, we consider the arbitrary functions P (x) and K(x) ≡ K1(x) ≡ K2(x).

Lemma 3.1. Assume that K1(x) ≡ K(x) ≡ K2(x) ̸≡ const, and K(x) ≡ αP (x) + β
∫
Ω

P (x) dx,

α > 0, β > 0. Then the semi-trivial steady state (u∗(x), 0) of (1.1) is unstable if ν ≤ 1.

Proof. The principal eigenvalue [2] of (3.2) around (u∗(x), 0) is defined as

σ1 = sup
ϕ ̸=0,ϕ∈W1,2

−d2 ∫
Ω

|∇ϕ|2

P (x)
dx+

∫
Ω

ϕ2 (K(x)− νu∗(x)) dx

/∫
Ω

ϕ2 dx.

Choosing the eigenfunction ϕ(x) =
√
K(x)− αP (x) = const and denoting Ip = β

∫
Ω

∫
Ω

P (x) dx dx,

the principal eigenvalue σ1 is given by

σ1 ≥ 1

Ip

∫
Ω

(K(x)− αP (x)) (K(x)− νu∗(x)) dx

≥ 1

Ip

∫
Ω

(K(x)− αP (x)) (K(x)− u∗(x)) dx, if ν ≤ 1

=
1

Ip

∫
Ω

K(x) (K(x)− u∗(x)) dx+
α

Ip

∫
Ω

P (x) (u∗(x)−K(x)) dx.

While K(x) ≡ K1(x) ≡ K2(x), from Proposition 2.1, we have
∫
Ω

P (x) (u∗(x)−K(x)) dx > 0 and∫
Ω

K(x) (K(x)− u∗(x)) dx > 0. Therefore, σ1 is strictly positive.

Lemma 3.2. Suppose that K1(x) ≡ K(x) ≡ K2(x) ̸≡ const, and K(x) ≡ αP (x) + β
∫
Ω

P (x) dx,

α > 0, β > 0. Then the semi-trivial steady state (0, v∗(x)) of (1.1) is unstable if µ ≤ 1.

Proof. Consider the associated eigenvalue problem of the first equation of (1.1) around (0, v∗(x))

d1∆

(
ψ(x)

P (x)

)
+ ψ(x) (K(x)− µv∗(x)) = σψ(x), x ∈ Ω,

∂(ψ/P )

∂n
= 0, x ∈ ∂Ω. (3.3)
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The principal eigenvalue of (3.3) is

σ1 = sup
ψ ̸=0,ψ∈W1,2

−d1 ∫
Ω

|∇(ψ/P )|2 dx+

∫
Ω

ψ2

P
(K(x)− µv∗) dx

/∫
Ω

ψ2

P
dx.

Taking positive eigenfunction ψ(x) =
√
αP (x), addressing Ic defined in (3.1) and if K(x) ≡ αP (x) +

β
∫
Ω

P (x) dx, we obtain

σ1 ≥ 1

Ic

∫
Ω

αP (x) (K(x)− µv∗(x)) dx

≥ 1

Ic

∫
Ω

αP (x) (K(x)− v∗(x)) dx, since µ ≤ 1

=
1

Ic

∫
Ω

(αP (x)−K(x) +K(x)) (K(x)− v∗(x)) dx

=
1

Ic

∫
Ω

K(x) (K(x)− v∗(x)) dx+
1

Ic

∫
Ω

(K(x)− αP (x)) (v∗(x)−K(x)) dx

=
1

Ic

∫
Ω

K(x) (K(x)− v∗(x)) dx+
β

Ic

∫
Ω

∫
Ω

P (x) dx (v∗(x)−K(x)) dx.

Now for arbitrary positive and smooth function P (x), the fact is
∫
Ω

P (x) dx = c > 0, where c is a

constant and we obtain

σ1 ≥ 1

Ic

∫
Ω

K(x) (K(x)− v∗(x)) dx+
cβ

Ic

∫
Ω

(v∗(x)−K(x)) dx.

Next, Proposition 2.2 implies that both integrals
∫
Ω

K(x) (K(x)− v∗(x)) dx and
∫
Ω

(v∗(x)−K(x)) dx

are strictly positive as long as K1(x) ≡ K(x) ≡ K2(x) ̸≡ const. Therefore, σ1 > 0 and the proof
follows.

Lemma 3.3. Let K1(x) ≡ K(x) ≡ K2(x) ̸≡ const, K(x) ≡ αP (x) + β
∫
Ω

P (x) dx, α > 0, β > 0,

and µ = ν = 1 then the system (1.1) has a unique positive coexistence equilibrium (us, vs) ≡
(αP (x), β

∫
Ω

P (x) dx).

Proof. For a stationary solution (us, vs) under the assumption K1(x) ≡ K(x) ≡ K2(x), the problem
(1.1) can be written as

d1∆

(
us(x)
P (x)

)
+ us(x) (K(x)− us(x)− vs(x)) = 0, x ∈ Ω,

d2∇ ·
(

1
P (x)

∇vs(x)
)
+ vs(x) (K(x)− us(x)− vs(x)) = 0, x ∈ Ω,

∂(us/P )
∂n

= ∂vs
∂n

= 0, x ∈ ∂Ω.

(3.4)

By direct substitution, one can verify that (αP (x), β
∫
Ω

P (x) dx) is a coexistence solution of (3.4). To

prove the uniqueness, assume that there is an another solution (us, vs) of (3.4) except (αP (x), β
∫
Ω

P (x) dx).

The following result comes from Equation (3.4) for vs > 0 and we obtain∫
Ω

(us + vs −K(x)) dx =

∫
Ω

d2
P

|∇vs|2

v2s
dx ≥ 0. (3.5)

7
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The equality is attained in (3.5) only when vs ≡ const.

We have to show that us(x) + vs(x) ≡ K(x).

Let us define the eigenvalue problem by assuming to the contrary that us(x) + vs(x) ̸≡ K(x)

d1∆

(
φ(x)

P (x)

)
+ φ(x) (K(x)− us − vs) = σφ(x), x ∈ Ω,

∂(φ/P )

∂n
= 0, x ∈ ∂Ω. (3.6)

The principal eigenvalue of (3.6) is

σ1 = sup
φ̸=0,φ∈W1,2

−d1 ∫
Ω

|∇(φ/P )|2 dx+

∫
Ω

φ2

P
(K(x)− us − vs) dx

/∫
Ω

φ2

P
dx.

Substituting φ(x) =
√
αP (x), using Ic defined in (3.1) and using the notation as declared in Lemma

3.2,
∫
Ω

P (x) dx = c > 0, we have

σ1 ≥ 1

Ic

∫
Ω

(αP (x)−K(x) +K(x)) (K(x)− us − vs) dx

=
β

Ic

∫
Ω

∫
Ω

P (x) dx (us + vs −K(x)) dx+
1

Ic

∫
Ω

K(x) (K(x)− us − vs) dx

=
cβ

Ic

∫
Ω

(us + vs −K(x)) dx+
1

Ic

∫
Ω

K(x) (K(x)− us − vs) dx.

If µ = ν = 1, Proposition 2.3 becomes
∫
Ω

K(x) (K(x)− us − vs) dx > 0. Thus, σ1 > 0 using (3.5)

and by Proposition 2.3. The zero principal eigenvalue of (3.6) contradicts the positivity of σ1 > 0 and
thus us(x) + vs(x) ≡ K(x).

Next, if us(x)+vs(x) ≡ K(x) then by the Maximum Principle [18], ws = const and vs = const in (1.1),
where us/P = ws. So we must have P (x)ws+vs ≡ αP (x)+β

∫
Ω

P (x) dx and this implicity implies that

ws = α and vs = β
∫
Ω

P (x) dx. Hence the unique solution of (1.1) is (us, vs) = (αP (x), β
∫
Ω

P (x) dx).

For the monotone dynamical system (1.1), if all equilibriums are unstable except one then we can
conclude that the remaining steady state is globally asymptotically stable. The next theorem shows
that the coexistence equilibrium (us, vs) of (1.1) remains globally asymptotically stable regardless of
the initial functions.

Theorem 3.4. Let K1(x) ≡ K(x) ≡ K2(x) ̸≡ const, K(x) ≡ αP (x)+ β
∫
Ω

P (x) dx, α > 0, β > 0 and

µ = ν = 1. Then there exists a unique coexistence solution (us, vs) ≡ (αP (x), β
∫
Ω

P (x) dx) of (1.1)

which is globally asymptotically stable. Moreover, if µ < 1 and ν < 1, the system (1.1) has a stable
coexistence solution (us, vs).

Theorem 3.5. Assume that K1(x) ≡ K(x) ≡ K2(x) and let P (x) and K(x) are non-constant and
arbitrary. Then there exists positive µ∗ and ν∗ such that for µ ∈ (0, µ∗), ν ∈ (0, ν∗), the problem (1.1)
has a stable coexistence solution (us, vs).

8
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Proof. It is sufficient to show that two semi-trivial equilibria (u∗, 0) and (0, v∗) are unstable. Let us
define

a =

∫
Ω

P (x)K(x) dx > 0, b =

∫
Ω

K(x) dx > 0

such that

µ∗ = min

 a∫
Ω

P (x)v∗(x) dx
, 1

 , ν∗ = min

 b∫
Ω

u∗(x) dx
, 1

 . (3.7)

If µ < µ∗ then
∫
Ω

P (x)K(x) dx > µ
∫
Ω

P (x)v∗(x) dx which implies that

∫
Ω

P (x) (K(x)− µv∗(x)) dx > 0. (3.8)

In a similar fashion, for ν < ν∗, we have∫
Ω

(K(x)− νu∗(x)) dx > 0. (3.9)

Linearize the second equation in (1.1) around (u∗, 0) and consider the associated eigenvalue problem

d2∇ · ∇ϕ(x)
P (x)

+ ϕ(x) (K(x)− νu∗(x)) = σϕ(x), x ∈ Ω,
∂ϕ

∂n
= 0, x ∈ ∂Ω. (3.10)

The principal eigenvalue of (3.10) can be designated by

σ1 = sup
ϕ ̸=0,ϕ∈W1,2

[−d2
∫
Ω

|∇ϕ|2

P (x)
dx+

∫
Ω

ϕ2 (K(x)− νu∗(x)) dx]/

∫
Ω

ϕ2 dx.

Sorting constant ϕ(x) and using (3.9), we have σ1 = 1
|Ω|

∫
Ω

(K(x)− νu∗(x)) dx > 0. Therefore,

(u∗, 0) is not stable. For µ < µ∗, instability of (0, v∗) is verified similarly.

3.2 Small Deviations Between Two Carrying Capacities
This section continues the development of equilibrium analysis in case of K1(x) ≡ K2(x)± ϵ, ϵ > 0
as we did in previous sections for function K1(x) ≡ K2(x) and directed distribution P (x) while µ =
ν = 1. The problem is linearized about the equilibria to determine the behavior of the models near
the equilibria.

Theorem 3.6. Let K1(x) and K2(x) be non-constant, µ = ν = 1, K1(x) ≡ P (x) + b, and K2(x) ≡
P (x) + c, where b and c are positive constants. Then the system (1.1) has a stable coexistence
solution if |K2(x)−K1(x)| < ϵ for any x ∈ Ω, where ϵ is very small and positive.

Proof. It is simple to observe that all spatial functions P (x), K1(x) and K2(x) are arbitrary. For small
deviations between K1(x) and K2(x), we have either K1 − ϵ < K1 ≤ K2 < K1 + ϵ or K2 − ϵ <
K2 ≤ K1 < K2 + ϵ, where ϵ is small enough and positive. Also it is noted that either K1 ≡ K2 + b∗

or K2 ≡ K1 + c∗, where b∗ = b− c > 0 and c∗ = c− b > 0.
First, let us consider the caseK1(x) ≡ P (x)+b, b > 0, and |K2(x)−K1(x)| < ϵ withK2(x) ≥ K1(x).
Then the principal eigenvalue of (1.1) around (u∗(x), 0) is defined as

σ1 = sup
ϕ̸=0,ϕ∈W1,2

−d2 ∫
Ω

|∇ϕ|2

P (x)
dx+

∫
Ω

ϕ2 (K2(x)− u∗(x)) dx

/∫
Ω

ϕ2 dx. (3.11)

9



Kamrujjaman; PSIJ, 18(4): 1-16, 2018; Article no.PSIJ.42472

It is noted that by construction, K1(x) > P (x) for any x ∈ Ω. Considering ϕ(x) =
√
K1(x)− P (x) =√

b = b∗ > 0, the principal eigenvalue is

σ1 ≥ 1

b2∗|Ω|

∫
Ω

(K1(x)− P (x)) (K2(x)− u∗(x)) dx

≥ 1

b2∗|Ω|

∫
Ω

(K1(x)− P (x)) (K1(x)− u∗(x)) dx, K1 ≤ K2 < K1 + ϵ

=
1

b2∗|Ω|

∫
Ω

K1(x) (K1(x)− u∗(x)) dx+

∫
Ω

P (x) (u∗(x)−K1(x)) dx

 .
Hence, σ1 is positive by Proposition 2.1.

The instability of (0, v∗) is computed similarly if K2(x) ≡ P (x) + c and K1(x) ≥ K2(x) such that
|K2(x)−K1(x)| < ϵ which due to K2 − ϵ < K2 ≤ K1 < K2 + ϵ.

Since both semi-trivial equilibria are unstable and the trivial solution is unstable by Lemma 2.1, the
proof follows in case of strong monotone dynamical system (1.1).

4 EFFECTS OF CROWDING TOLERANCE: µ = ν = 1

In this section, our study is exploring the analysis for non-symmetric growth functions due to K1(x) ̸≡
K2(x).

Lemma 4.1. Let P (x), K1(x) and K2(x) be non-constant, µ = ν = 1, K2(x) ≡ P (x) + c, c > 0, and
K1(x) ≥ K2(x) for any x ∈ Ω and K1(x) > K2(x) in a nonempty open domain. Then the equilibrium
(0, v∗(x)) of (1.1) is unstable. Moreover, if K1 ≡ αP, α > 0 and K1 ≥ K2 on Ω then (0, v∗(x)) is also
unstable.

Proof. Let us study the eigenvalue problem of (1.1) around (0, v∗(x)) and we obtain

d1∆

(
ψ(x)

P (x)

)
+ ψ(x) (K1(x)− v∗(x)) = σψ(x), x ∈ Ω,

∂(ψ/P )

∂n
= 0, x ∈ ∂Ω. (4.1)

Considering ψ(x) =
√
αP (x) and inviting Ic drafted in (3.1), the principal eigenvalue of (4.1) is given

by

σ1 ≥ α

Ic

∫
Ω

P (x) (K1(x)− v∗(x)) dx

≥ α

Ic

∫
Ω

P (x) (K2(x)− v∗(x)) dx, when K1 ≥ K2

=
α

Ic

∫
Ω

(K2(x)− c) (K2(x)− v∗(x)) dx, while P (x) ≡ K2(x)− c

=
α

Ic

∫
Ω

K2(x) (K2(x)− v∗(x)) dx+
cα

Ic

∫
Ω

(v∗(x)−K2(x)) dx.

Thus, σ1 > 0 by Proposition 2.2.

10
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Next, if K1 ≡ αP, α > 0 then we have

σ1 ≥ α

Ic

∫
Ω

P (x) (K1(x)− v∗(x)) dx =
1

Ic

∫
Ω

K1(x) (K1(x)− v∗(x)) dx.

In absence of species u, v∗(x) is the solution of (2.4) and after integrating the equation (2.4) over Ω
using boundary conditions, we have

∫
Ω

v∗ (K2(x)− v∗(x)) dx = 0 such that

0 =

∫
Ω

v∗ (K2(x)− v∗(x)) dx ≤
∫
Ω

v∗ (K1(x)− v∗(x)) dx, while K1 ≥ K2.

Therefore,
∫
Ω

K1(x) (K1(x)− v∗(x)) dx ≥ 0 and the inequality is strict since K1 ̸≡ const ̸≡ v∗ and

hence σ1 > 0.

Lemma 4.2. Assume that P (x), K1(x) and K2(x) are non-constant and µ = ν = 1. If K1(x) ≡
P (x) + b, b > 0, and K2(x) > K1(x) for any x ∈ Ω then the semi-trivial equilibrium (u∗(x), 0) of (1.1)
is unstable.

Proof. The principal eigenvalue of (1.1) around (u∗(x), 0) is defined as

σ1 = sup
ϕ ̸=0,ϕ∈W1,2

−d2 ∫
Ω

1

P (x)
|∇ϕ|2 dx+

∫
Ω

ϕ2 (K2(x)− u∗(x)) dx

/∫
Ω

ϕ2 dx

≥ sup
ϕ ̸=0,ϕ∈W1,2

−d2 ∫
Ω

1

P (x)
|∇ϕ|2 dx+

∫
Ω

ϕ2 (K1(x)− u∗(x)) dx

/∫
Ω

ϕ2 dx

where K2(x) > K1(x) in a nonempty open domain.

For eigenfunction ϕ(x) =
√
K1(x)− P (x) =

√
a, and designating Ia =

∫
Ω

a dx, the principal eigenvalue

becomes
σ1 ≥ 1

Ia

∫
Ω

K1(x) (K1(x)− u∗(x)) dx+
1

Ia

∫
Ω

P (x) (u∗(x)−K1(x)) dx. (4.2)

Hence, σ1 is positive by Proposition 2.1.

Lemma 4.3. Let P (x), K1(x) and K2(x) be non-constant and µ = ν = 1. If K1(x) ≡ αP (x), α >
0 and K1(x) ≥ K2(x) in some nonempty open domain then (1.1) has no coexistence solution
(us(x), vs(x).

Proof. Let us assume that there is a stationary solution (us(x), vs(x)) and at the end we will show
the contradictory results. For (us(x), vs(x)), the problem (1.1) is as follows:

d1∆

(
us(x)
P (x)

)
+ us(x) (K1(x)− us(x)− vs(x)) = 0, x ∈ Ω,

d2∇ ·
(

1
P (x)

∇vs(x)
)
+ vs(x) (K2(x)− us(x)− vs(x)) = 0, x ∈ Ω,

∂(us/P )
∂n

= ∂vs
∂n

= 0, x ∈ ∂Ω.

(4.3)

Adding the equations of us and vs in (4.3), integrating over Ω and employing K1(x) ≥ K2(x), we
obtain

0 =

∫
Ω

us(x) (K1(x)− us(x)− vs(x)) dx+

∫
Ω

vs(x) (K2 − us(x)− vs(x)) dx

≤
∫
Ω

(us(x) + vs(x)) (K1(x)− us(x)− vs(x)) ,

11
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since ∆

(
us(x)
P (x)

)
= 0 and ∇ ·

(
1

P (x)
∇vs(x)

)
= 0 due to the boundary conditions. Thus

∫
Ω

(us(x) + vs(x)) (K1(x)− us(x)− vs(x)) ≥ 0

which yields ∫
Ω

K1(x) (K1(x)− us − vs) dx ≥
∫
Ω

(K1(x)− us − vs)
2 dx > 0 (4.4)

unless us + vs ≡ K1. The equality holds only for K1 ≡ K2. Hence, we have two cases:

Case 1: If us + vs ̸≡ K1, we consider the principal eigenvalue and obtain

σ1 = sup
φ̸=0,φ∈W1,2

−d1 ∫
Ω

|∇(φ/P )|2 dx+

∫
Ω

φ2

P
(K1(x)− us − vs) dx

/∫
Ω

φ2

P
dx.

For a suitable selection of positive eigenfunction φ(x), the principal eigenvalue becomes

σ1 ≥ 1

Ic

∫
Ω

αP (x) (K1(x)− us − vs) dx =
1

Ic

∫
Ω

K1(x) (K1(x)− us − vs) dx > 0 (4.5)

by inequality (4.4) and using the primary condition K1(x) ≡ αP (x); a contradiction, σ1 > 0 with the
zero principal eigenvalue.

Case 2: If us(x) + vs(x) ≡ K1(x) ≡ K2(x), by the Maximum Principle [18] and introducing a new
variable us/P = ws, the solutions of (1.1) are ws = const and vs = const. Then we must have
P (x)ws + vs ≡ K1(≡ K2), which implies that ws = 1/α and vs = 0. A contradiction of zero solution
follows the proof.

Remark 4.1. It is noted that the trivial steady state (0, 0) is always unstable.

Once again, for a monotone problem (1.1), the rest equilibrium (u∗, 0) is the global attractor and the
result is implemented in the following Theorem.

Theorem 4.4. Let P (x), K1(x) and K2(x) be non-constant and µ = ν = 1. If K1(x) ≡ αP (x), α > 0
and K1(x) ≥ K2(x) in some nonempty open domain then the semi-trivial equilibrium (u∗(x), 0) of
(1.1) is globally asymptotically stable.

If the second species are in homogeneous environment while the functions P (x) and K1(x) are
arbitrary, we can explore the next few results.

Lemma 4.5. Suppose that P (x), K1(x) are non-constant, K2 ≡ const and µ = ν = 1. If K1(x) ≡
P (x)+b, b > 0, and K2 is the upper bound of K1(x) in a nonempty open domain then the semi-trivial
steady state (u∗(x), 0) of (1.1) is unstable.

Lemma 4.2 is still valid for this case and the proof of Lemma 4.5 is omitted.

Lemma 4.6. Let P (x), K1(x) be non-constant, K2 ≡ const and µ = ν = 1. If K1(x) ≡ P (x)+ b, b >
0, and K2 is the upper bound of K1(x) in a nonempty open domain then the system (1.1) has no
coexistence solution.

12
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Proof. This result is proven by the method of contradiction. Assume that there is a stationary
coexistence solution (us(x), vs(x)), and the system (1.1) can be written as

d1∆

(
us(x)
P (x)

)
+ us(x) (K1(x)− us(x)− vs(x)) = 0, x ∈ Ω,

d2∇ ·
(

1
P (x)

∇vs(x)
)
+ vs(x) (K2(x)− us(x)− vs(x)) = 0, x ∈ Ω,

∂(us/P )
∂n

= ∂vs
∂n

= 0, x ∈ ∂Ω.

(4.6)

Adding first two equations of (4.6) and integrating over Ω, we obtain∫
Ω

us(x) (K1(x)− us(x)− vs(x)) dx+

∫
Ω

vs(x) (K2 − us(x)− vs(x)) dx = 0, (4.7)

since diffusion terms are vanishes due to the boundary conditions. For the upper bound of K1(x), we
have (K2 − us(x)− vs(x)) > (K1(x)− us(x)− vs(x)) such that∫

Ω

(us(x) + vs(x)) (K2 − us(x)− vs(x)) > 0.

After few steps and notifying c∗ = K−1
2 , we obtain∫

Ω

(K2 − us − vs) dx > c∗
∫
Ω

(K2 − us − vs)
2 dx > 0 (4.8)

which excludes the possibility of us+vs ≡ K2. Then we consider the principal eigenvalue for us+vs ̸≡
K2 and obtain

σ1 = sup
φ̸=0,φ∈W1,2

−d2 ∫
Ω

|∇φ|2

P (x)
dx+

∫
Ω

φ2 (K2 − us − vs) dx

/∫
Ω

φ2 dx. (4.9)

Choosing constant eigenfunction φ, the principal eigenvalue becomes

σ1 ≥ 1

|Ω|

∫
Ω

(K2 − us(x)− vs(x)) dx > 0 (4.10)

by inequality (4.8); a contradiction of the positivity of σ1 follows the proof.

Lemmata 4.5 and 4.6 follow due to the following result pertaining to the problem (1.1).

Theorem 4.7. Suppose that P (x), K1(x) are non-constant, K2 ≡ const and µ = ν = 1. If K1(x) ≡
P (x) + b, b > 0, and K2 is the upper bound of K1(x) in a nonempty open domain, the semi-trivial
equilibrium (0, v∗(x)) of (1.1) is globally asymptotically stable.

5 CONCLUSION AND FUR-
THER WORK

We investigated a Lotka-Volterra type reaction-
diffusion model that describes two species
cooperative-competitive dynamics with different
dispersal strategies. By considering non-
homogeneous environment, we established

several results. If the growth functions are
symmetric and the carrying capacity is allotted in
terms of distribution function, there is a unique
coexistence solution. For weak competition with
common resource area of both populations, there
exists at least one stable coexistence solution.

If there is a small difference between two
resource functions then, once again, the

13
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coexistence solution is stable. By setting
competition coefficients equal to 1, if the resource
and distribution functions changes rationally then
the global stability for the species operated by the
distribution P (x), is guaranteed. If the second
species is in homogeneous environment while
the rest one is in heterogeneous niche, only the
second species survives.

To expand the current model for further research,
we can modify the problem (1.1) to introduce
the new idea, where the competition coefficients
are spatially distributed. In this problem, we
introduce non-constant competition coefficients
µ(x) > 0, ν(x) > 0 with a common carrying
capacity K(x) of both species in (1.1). Thus the
problem (1.1) can be rewritten as follows:



∂u
∂t

= d1∆

(
u(t, x)
P (x)

)
+ u(t, x) (K(x)− u(t, x)− µ(x)v(t, x)) , t > 0, x ∈ Ω,

∂v
∂t

= d2∇ · 1
P (x)

∇v(t, x) + v(t, x) (K(x)− ν(x)u(t, x)− v(t, x)) , t > 0, x ∈ Ω,

∂(u/P )
∂n

= ∂v
∂n

= 0, x ∈ ∂Ω,

u(0, x) = u0(x), v(0, x) = v0(x), x ∈ Ω,

(5.1)

where
µ(x) ≡ K(x)− P (x)

Q(x)
> 0 and ν(x) ≡ K(x)−Q(x)

P (x)
> 0 (5.2)

such that 0 < P (x) < K(x) and 0 < Q(x) < K(x) for any x over the domain Ω. The function Q(x) is
in the class of C1+α(Ω), α > 0 and is positive.

Let us explore some instant results of the system (5.1). For constant Q, the system has a coexistence
solution and the solution is attractive globally under certain conditions of P (x) and K(x).

Theorem 5.1. Let Q ≡ const and K(x) ≡ P (x) + Q for any x ∈ Ω. Then the system (5.1) has a
unique solution (us, vs) ≡ (P (x), Q), which is globally asymptotically stable.

Proof. Following Lemma 3.1, σ1, the principle eigenvalue of the equation of v in (5.1) around (u∗, 0)
is expressed as

σ1 = sup
ϕ ̸=0,ϕ∈W1,2

−d2 ∫
Ω

1

P (x)
|∇ϕ|2 dx+

∫
Ω

ϕ2 (K(x)− ν(x)u∗(x)) dx

/∫
Ω

ϕ2 dx

Selecting ϕ(x) =
√
K(x)− P (x) =

√
Q = const, and denoting IQ =

∫
Ω

Qdx, σ1 is given by

σ1 ≥ 1

IQ

∫
Ω

(K(x)− P (x))

(
K(x)− (K(x)−Q)u∗(x)

P (x)

)
dx

≥ 1

IQ

∫
Ω

(K(x)− P (x)) (K(x)− u∗(x)) dx, if K(x) ≡ P (x) +Q

=
1

IQ

∫
Ω

K(x) (K(x)− u∗(x)) dx+
1

IQ

∫
Ω

P (x) (u∗(x)−K(x)) dx.

Therefore, σ1 is strictly positive by Proposition 2.1.

The instability of (0, v∗) is evaluated similarly. By extending the proof of Lemma 3.3, it is easy to
establish that the system (5.1) has a unique coexistence solution as long as K(x) ≡ P (x) +Q.
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Theorem 5.2. Assume that K(x) ≡ P (x) +
c, c > 0 and K(x) ≤ P (x) +Q(x) for any x ∈ Ω.
Then the system (5.1) has a stable coexistence
solution (us, vs).

Proof. It can be checked that there exists some
non-constant functions P (x), Q(x) and K(x)

such that K(x)−P (x)
Q(x)

≤ 1 and K(x)−Q(x)
P (x)

≤ 1, for
all x in some nonempty open domain.

If K(x) ≡ P (x) + c and K(x)−Q(x)
P (x)

≤ 1, then
by Proposition 2.1, we can prove that the semi-
trivial equilibrium (u∗, 0) is unstable. Similarly,
it is also possible to show that the semi-trivial
equilibrium (0, v∗) is unstable by Proposition 2.2
while K(x) ≡ P (x) + c and K(x)−P (x)

Q(x)
≤ 1.
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