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ABSTRACT 
 

In a recent paper [K. Zhou, M. Han, Q. Wang, Math. Method. Appl. Sci. 40 (2016) 2772-2783], the 
authors investigated the traveling wave solutions of a delayed diffusive SIR epidemic model.  

When the basic reproduction number 10 R  and the wave speed 
*cc   (

*c  is the critical speed), 

they obtained the existence of a non-trivial and non-negative traveling wave solution. When 10 R  

and 
*0 cc   , they established non-existence of the non-trivial and non-negative traveling wave 

solutions. When 10 R
 
and 

*cc  , the existence of traveling waves was left as an open problem. 

The aim of this paper is to solve this problem by applying upper-lower solution method and 
Schauder's fixed point theorem. 
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1. INTRODUCTION  
 
As is known to all, the spatial movement of the 
population plays a vital role in epidemic models 
and the time variation governs the dynamical 
behaviour of the epidemic propagation. 
Spreading processes of many epidemics have 
been modelled by reaction-diffusion equations 
[1,2]. Usually, the infected individuals cannot be 
transmitted the epidemic to others immediately 
after being infected, and a certain amount of 
biological development is necessary before they 
can infect others. Thus, time delay has been 
incorporated into many epidemic models [3-8]. 
Travelling waves in these models describe the 
epidemic wave moving out from an initial 
disease-free equilibrium to the endemic 
equilibrium with a constant speed [9]. The wave 
speed cmeasures how fast the disease invades 
geographically. Results on this topic may help 
people take necessary measures in advance to 
prevent the disease, or at least, decrease 
possible negative consequences.  
 
Until recently, much attention has been paid to 
the existence of super-critical travelling wave 
solutions for diffusive epidemic models with or 
without time delay [2-19]. For example, Zhan et 
al. [19] investigated a spatially extended SI 
epidemic system with a nonlinear incidence rate. 
Using the method for the dynamical system, they 
obtained the existence of a heteroclinic orbit 
connecting two equilibrium points in R3 which 
corresponds to a super-critical travelling wave 
solution connecting the disease-free and 
endemic equilibria for this SI epidemic system. 
Lotfi et al. [7] derived the existence of super-
critical travelling waves of a delayed diffusive 
epidemic model with specific nonlinear incidence 
rate by constructing a pair of upper and lower 
solutions and applying the Schauder’s fixed point 
theorem. Very recently, Zhou et al. [3] 
investigated the travelling wave solution of a 
delayed diffusive epidemic model 
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                                                                     (1.1) 
 

where ),( txS and ),( txI  are the densities of 

susceptible and infective individuals at location 

x and time t , respectively. The constants 0id  

)2,1( i  denote the spatial motility of each class,  

0  represents the natural death rate of each 

class, 0  is the transmission coefficient, 

0  refers to the recovery rate and 0 is 

the latency of the infection. The corresponding 
reaction system of (1.1) is 
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System (1.2) has a disease-free equilibrium 

)0,1(0 E  and a unique endemic equilibrium 

),( *** ISE   if the basic reproduction number, 

where ,1:0 
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The traveling wave profile system of (1.1) is 
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(1.3) 
 
where ctx  is the wave variable and c  is 

the wave speed. A traveling wave solution of (1.1) 

is a pair of function ))(),((  IS  satisfying (1.3) 

and the asymptotic boundary conditions 
 

)0,1())(,( IS ,      ),())(,( ** ISIS  .          (1.4) 

 
Zhou et al. [3] established the existence of a non-
trivial super-critical travelling wave solution 

))(),((  IS  satisfying the asymptotic boundary 

condition (1.4). They also proved the non-
existence of travelling wave solutions.  
 

In contrast, little work has been done for the 
existence of critical travelling wave solutions for 
diffusive epidemic models [6,17,18]. Using the 
technique for dynamical system, Ding et al. [17] 
presented the existence of critical travelling wave 
solutions for a diffusive SIS epidemic model. By 
a limiting argument, Wang et al. [18] got the 
existence of critical traveling wave solutions for a 
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diffusive epidemic model. Fu [6] showed the 
existence of critical travelling wave solutions of a 
diffusive SIR model with delay by constructing a 
pair of upper and lower solutions and applying 
the Schauder’s fixed point theorem.  Here we 
would like to point out that, due to the 
introduction of time delay, the applicability of the 
method in [17] to model (1) is not so obvious. We 
also note that the proof in [18] is problematic 
because the authors used the integrability of I-
component in SIR model on the real line before 
they hadn’t obtained the asymptotic boundary 
condition of the critical traveling wave. In [3], the 
existence of critical traveling wave solution of 
(1.1) was left as an open problem. In the present 
paper, inspired by [6], we intend to solve this 
problem. 
 
Linearizing the second equation in (1.3) at 

)0,1(0 E , one can obtain the corresponding 

characteristic equation  
 

0)(),( 2
2    cecdc .         (1.5) 

 
For our purpose, we present the properties of 
(1.5) below, which have been given in [3]. 
 

Lemma 2.1. [3]   Assume that 10 R . Then there 

exists 0* c  and 0*  , such that  
 

  0),( **  c    and     0),(:
),( **

),( **





c

c

c









. 

Moreover, 
 

(i) if 
*0 cc  , then 0),(  c  for any 

0 ; 

(ii) if 
*cc  , then 0),(  c  has two positive 

roots )(1 c  and )(2 c  with 
*

1 )(0   c  

)(2 c , such that  
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The main result of this paper is stated as follows. 
  

Theorem 1.1. If 10 R  and 
*cc  , then system 

(1.1) admits a nontrivial, positive and bounded 
traveling wave solution satisfying the asymptotic 
boundary conditions (1.4). 
 
Obviously, Theorem 1.1 supplements the result 
in [1]. From the epidemiological point of view, 
Theorem 1.1 together with the result in [3] 
determines whether the disease modelled by (1.1) 
can transmit and how fast it spreads if it can 
transmit. This can provide some insights into 
controlling the spread of the disease. Moreover, 

it can be seen that the critical wave speed 
*c  is 

defined as an implicit function of the model’s 
parameters, which can help us to assess the 
control strategies. The method applied in this 
paper has prospect for deriving the existence of 
critical traveling wave solutions for the diffusive 
epidemic models in [7, 18]. 
 
The rest of this paper is organised as follows. 
Section 2-Section 4 are devoted to proving 
Theorem 1.1.  In Section 2, we construct a pair of 
suitable upper and lower solutions of (1.3). In 
Section 3, we introduce a cone with this pair of 
upper and lower solutions and define a nonlinear 
operator. Then we establish the existence of 
critical travelling wave solution for (1.1) by 
Schauder's fixed point theorem. In Section 4, the 
asymptotic boundary of critical traveling wave 
solution is found by means of the squeeze 
theorem and Lyapunov functional method. 

  

2. CONSTRUCTION OF UPPER AND LOWER SOLUTIONS  
 

We introduce four continuous functions in R  as follows: 
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where  
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M, and 2L  are three positive constants to be determined in the following lemmas. 

Lemma 2.1.  )(S  satisfies   
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for all .R  

 

Proof.  Since 1)( S  in R , inequality (2.1) holds obviously. 

 

Lemma 2.2.  )(I  satisfies  
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This completes the proof. 
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Lemma 2.3.  Assume that 
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holds trivially. When 2  , 
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Note that   
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1

2  as 
 0 and when 2  ,   
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1
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*
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The proof is completed. 
 

Lemma 2.4. Let  be fixed and satisfy Lemma 2.3. Then there exists a large enough constant 02 L  

such that the inequality 
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conclude that (2.6) holds for 02 L  large enough. The proof is finished. 

       
3. APPLICATION OF SCHAUDER’S FIXED POINT THEOREM 
 
System (1.2) can be rewritten in an equivalent form: 
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Proof.  For ))(),((  IS , it is sufficient to prove that  
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By (3.3), (3.4) and the continuity of ))(,(2 ISF  and )(I  in R , we obtain that  
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                                                              (3.6) 

 

which together with (3.5) and the continuity of ))(,(2 ISF  and )(I  in R  imply that 

 

)())(,(2  IISF      for    R . 

 

The claim of this lemma is shown. 
 

Lemma 3.2. The operator F  is continuous and compact with respect to the norm 


  in 

),( 2RRB . 

 

Proof.  The proof is similar to the case 
*cc   in [1]. So we omit the details here for brevity. 

 

4. EXISTENCE AND ASYMPTOTIC BOUNDARY OF TRAVELING WAVE SOLUTION 
WITH CRITICAL SPEED 

 
Proposition 4.1.  Suppose that 10 R   and *cc  , then (1.1) admits a non-trivial positive traveling 

wave solution ))(),(( **  cxIcxS   satisfying the asymptotic boundary conditions (1.4).  Moreover,  

)()(
* eOI    as   . 
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Proof.  Applying Lemma 3.1, Lemma 3.2 and Schauder’s fixed point theorem, we conclude that F  

has a fixed point ))(),(( **  IS , that is, ))(,()( **1*  ISFS  , )(* I  ))(,( **2 ISF , which is 

also a traveling wave solution of (1.1) satisfying  
 

)()()( *  SSS       and    )()()( *  III     for  R .                                      (4.1) 

 
From (4.1) and squeeze theorem, we obtain that  
 

1)(* S ,  0)(* I  and )()(
*

*
 eOI      as    . 

 

Now we prove 1)(0 *  S  and 








 )(0 *I  for R . Assume by the way of  contradiction 

that 0)~(* S  for some R~ . Then there exist two constants Rmm 21,  such that 221 mm   

and ),(~
21 mm . This implies that )(S  attains its minimum in ),( 21 mm . From the first equation in 

(1.2) we get  
 

0
)()(

)()(
)()()()(')(''

*
**

*
**

****
*

*1 










cIS

cIS
SSSScSd    

 

for ),( 21 mm . Then one can use the strong maximum principle to get that  
 

0)(* S   for ),( 21 mm ,  
 

which contradicts the fact that 0)()(*   SS   for ),[ 21  m . Hence we have  

             0)(* S   for  R . 
 

Analogously, we have  
   

0)(* I  for  R . 

 

To prove 1)(* S  for R , we assume that 1)ˆ(* S  for some R̂ . Then 0)ˆ('* S ,

0)ˆ(''* S . This contradicts the first equation in (1.2) at the point  ˆ . Thus  

 

1)(* S     for   R  . 

 
Similarly, we have  









 )(0 *I    for  R . 

In the following, we intend to find the asymptotic boundary of ),( ** IS  at plus infinity. To the end, we 

consider the Lyapunov function: 
 

,1
)(

)('1
)),((

),(
)('

)(
ln1

)(
),(

)(
ln)(

),(

),(
)())(,(

*

2*

**

1

0 **

**

*

**
)(

*

**

*
*

*

*



























 





































I

I
Id

ISh

ISh
Sd

d
I

I

I

I
ISh

I

I
IIIdy

Iyh

ISh
SScISV

c

S

S
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where .),(
IS

SI
ISh


  By a similar argument to that in [3, Lemma 3.1], one can see that V is well-

defined and bounded from blow. Following the discussion on the case 
*cc   in [3], one can obtain 

that 0
))(,(






d

ISdV
and 0

))(,(






d

ISdV
 if and only if 

*)( SS  , 
*)( II  , 0)(' S  and 

0)(' I . 

 

Now we choose an increasing sequence  n  satisfying 


n
n

lim  and denote 

 

   







1*1*, )()(
nnnn SS  ,       








1*1*, )()(
nnnn II  , 

 

   







1*1*, )(')('
nnnn SS  ,     








1*1*, )(')('
nnnn II  . 

 

Since  
1*, )(
nnS  ,  

1*, )(
nnI  ,   

1*, )('
nnS   and   

1*, )('
nnI   are uniformly bounded in R , we 

infer that there exists a subsequence of functions, still denoted by nnn SIS *,*,*, ',,  and nI *,' , 

respectively, such that  
 

)(
~

)(lim **,  SS n
n




,  )(
~

)(lim **,  II n
n




, 

 

)('
~

)('lim **,  SS n
n




,  )('
~

)('lim **,  II n
n




. 

 
Then Lebesgue dominated convergence theorem gives that 
 

))(
~

,
~

())(,(lim ***,*,  ISVISV nn
n




.                                                                                     (4.2) 

 

Note that ))(,( ** ISV  is non-increasing and bounded from below, then we have that for Nn , 

there existes a constant C
~

 such that 
 

))(,())(,())(,(
~

*****,*,  ISVISVISVC nnn  , 

 

which indicates that 
 

0***,*, :))(,(lim))(,(lim VISVISV nnn
n n







                                                           (4.3) 

 
exists for all R , where 

0V  is a constant. By (4.2) 

and (4.3) we get that 
0** ))(

~
,

~
( VISV  , which 

leads to  

 

0
))(

~
,

~
( ** 





d

ISdV
 . 

 

This implies that ),())(,( **
** ISIS  . This 

proof is completed. 
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