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Abstract 
 

A general one-step hybrid block method with equidistant of order 6 has been successfully developed for 
the direct solution of second order IVPs in this article. Numerical analysis shows that the developed 
method is consistent and zero-stable which implies its convergence. The analysis of the new method is 
examined on two highly and mildly stiff second-order initial value problems to illustrate the efficiency of 
the method. It is obvious that our method performs better than the existing method within which we 
compare our result with. Hence, the approach is an adequate one for solving special second order IVPs. 
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1 Introduction 
 
In this article, we consider an approximate solution of general second order initial value problem (IVP) of 
the form 
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where f  is continuously differentiable on the given interval. Seeking an approximate solution for equation 

(1) is of great importance due to the wide application of this kind of differential equations in science, 
engineering and other real life problem [1].  
 
Several numerical methods were developed on the hands of many scholars to approximate the solution of 
problem (1) such as [1-10]. 
 
In order to achieve better accuracy and reduce execution time, hybrid block methods were first introduced 
according to [11,12] and later by [13], while hybrid methods were initially introduced to overcome zero 
stability barrier occurred in block methods mentioned by Dahlquists [14]. Furthermore, this method have the 
ability to change step-size besides utilizing data off-step points which contribute to the accuracy of the 
methods. In hybrid block methods, step and off-step points are combined to form a single block for solving 
ODEs (see [15-17]). Meanwhile, some scholars such as, [1,17] proposed an implicit one-step hybrid block 
method for the direct solution of second order ordinary differential equation. Their work motivated us to 
propose the treatment of second order ordinary differential equation using one-step block with equal 
equidistant for solving second order IVPs directly of the form (1) using interpolation and collocation. 
 

2 Derivation of the Method 
 
This section shows the development of the second derivative method with single step. The discrete scheme 
for the block method is constructed from the linear multistep method of the form 
 

jn

k

j
jjn

k

j
jkn fhyhy 







  

0

2
1

0

                  (2) 

 
Using Taylor series expansion to expand individual terms in (2) and upon substitution of the expansions 

back in (2), the matrix form can be written as below where the coefficients of 
 

n
m xy  are equated 
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The values of 
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2 ,,,,,,,  are obtained using matrix inverse method as given 

below 
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Substituting (3) in (2) gives the discrete scheme 
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Following the same approach, which yield the following derivatives of the discrete scheme 
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Adopting matrix inverse method 1
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determined and expressed as shown below 
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3 Analysis of our Block Method 
 
3.1 Order of the block 
 

Let the linear operator   hxyL :  on (6) be 
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Expanding jnjn fandy  in Taylor series and comparing the coefficients of h  gives 
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Definition 3.1: The linear operator L  and the associate block method are said to be of order p  if 

22110 .0,0   pppp CCCCCC   is called the error constant and implies that the 

truncation error is given by  xyhCt pp
pkn

22
2


  , [11].  

 

Comparing the coefficients of h , the order of the method (6) is  T6,6,6,6,6  with error constants  
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3.2 Consistency 

 
Definition 3.2: A block method is said to be consistent if its order is greater than one. From the above 
analysis, it is obvious that our method is consistent [14]. 

 

3.3 Zero stability 

 

A block is said to be zero stable if as 0h  if the root of the first characteristic polynomial   0r  

satisfied   110  kRA , and those roots with 1R  must be simple. For our method, 
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  1,0,0,0,0014  rrr  showing that our method is zero stable [11]. 

 

3.4 Convergent 

 
Definition 3.3: The necessary and sufficient conditions for a linear multistep method to be convergent are 
that it must be consistent and zero stable. Hence our method is convergent [14]. 

 

3.5 Region of absolute stability  

 
The region of Absolute stability of the derived block method was plotted using idea of [14]. 
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Fig. 1. The absolute stability region of our method  
 

4 Numerical Experiment 
 
The following second order initial value problems of ODEs are considered in order to examine the accuracy 
of the new developed method. 
 

Problem 1. Solve   yyyyxf 1000'1001',,   such that     10',10  yy  

With exact solution,   xexy   with 
10

1
h

 
 
Source: [17 and 6]. 
 

Table 1. Comparing the proposed method with [17,6] on problem 4.1 
 

x-
values 

Exact solution Computed solution Error in our 
method 

Error in [17] Error in [6] 

0.100 0.90483741803595957316  0.90483741803595957316 1.998600(-16) 1.054712E(-14) 2.050000E(-11) 

0.200 0.81873075307798185867  0.81873075307798185867 1.274500(-16) 1.776357E(-14) 4.390000E(-11) 

0.300 0.74081822068171786607  0.74081822068171786607 2.177100(-16) 2.342571E(-14) 6.550000E(-11) 

0.400 0.67032004603563930074  0.67032004603563930074 1.927400(-16) 2.797762E(-14) 8.380000E(-11) 

0.500 0.60653065971263342360  0.60653065971263342360 2.328600(-16) 3.130829E(-14) 9.860000E(-11) 

0.600 0.54881163609402643263  0.54881163609402643263 2.235300(-16) 3.397282E(-14) 1.100000E(-11) 

0.700 0.49658530379140951470  0.49658530379140951470 2.396400(-16) 3.563816E(-14) 1.190000E(-11) 

0.800 0.44932896411722159143  0.44932896411722159143 2.340900(-16) 3.674838E(-14) 1.240000E(-11) 

0.900 0.40656965974059911188  0.40656965974059911188 2.380800(-16) 3.730349E(-14) 1.280000E(-11) 

1.000 0.36787944117144232160  0.36787944117144232160 2.323300(-16) 3.741452E(-14) 1.300000E(-11) 

-3 -2.5 -2 -1.5 -1 -0.5 0
-1.5

-1

-0.5

0

0.5

1

1.5

Real(z)

Im
a
g
(z

)



 
 
 

Skwame et al.; AJPAS, 5(3): 1-9, 2019; Article no.AJPAS.51978 
 
 
 

7 
 
 

 
 

Fig. 2. Graphical solution of Problem 1 
 

Problem 2. Solve   '',, yyyxf  such that     10',00  yy  
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Source: [18]. 

 

 
 

Fig. 3. Graphical solution of Problem 2 
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Table 2. Comparing the proposed method with [18] on problem 4.2 
 

x-values Exact Solution Computed Solution Error in our 
method 

Error in [18] 

0.01 -0.10517091807564762480   -0.10517091807564922592 1.601120E(-15) 2.858824E(-15) 
0.02 -0.22140275816016983390  -0.22140275816017659074 6.756840E(-15) 1.439682E(-12) 
0.03 -0.34985880757600310400  -0.34985880757601930108 1.619708E(-14) 5.591383E(-11) 
0.04 -0.49182469764127031780  -0.49182469764130108397 3.076617E(-14) 4.796602E(-09) 
0.05 -0.64872127070012814680  -0.64872127070017958518 5.143838E(-14) 1.003781E(-08) 
0.06 -0.82211880039050897490  -0.82211880039058831113 7.933623E(-14) 1.590163E(-08) 
0.07 -1.01375270747047652160  -1.01375270747059227280 1.157512E(-13) 2.870014E(-08) 
0.08 -1.22554092849246760460  -1.22554092849262977050 1.621659E(-13) 4.284730E(-08) 
0.09 -1.45960311115694966380  -1.45960311115716994500 2.202812E(-13) 5.857869E(-08) 
0.10 -1.71828182845904523540  -1.71828182845933728000 2.920446E(-13) 8.449297E(-08) 

 

5 Conclusion  
 
A general one-step hybrid block method with equal off-mesh point of order 6 has been successfully 
developed for the direct solution of general second order IVP. 
 
Numerical analysis shows that the developed method is consistent and zero-stable which implies its 
convergence. The analysis of the new method is examined on two highly stiff second-order initial value 
problems to illustrate the efficiency of the method, and we further shown the graph of exact solution and 
computed result. It is obvious that our method performs better than the existing method of [6,17,18]. Hence, 
the approach is an adequate one for solving special second order initial value problems. 
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