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Abstract

A general one-step hybrid block method with equidistant of order 6 has been successfully developed for
the direct solution of second order IVPs in this article. Numerical analysis shows that the developed
method is consistent and zero-stable which implies its convergence. The analysis of the new method is
examined on two highly and mildly stiff second-order initial value problems to illustrate the efficiency of
the method. It is obvious that our method performs better than the existing method within which we
compare our result with. Hence, the approach is an adequate one for solving special second order [VPs.
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1 Introduction

In this article, we consider an approximate solution of general second order initial value problem (IVP) of
the form

1

Y =1y ) Hx) =y (%)= ()

*Corresponding author: E-mail: sabojohn630@yahoo.com;



Skwame et al.; AJPAS, 5(3): 1-9, 2019; Article no.AJPAS.51978

where f is continuously differentiable on the given interval. Seeking an approximate solution for equation

(1) is of great importance due to the wide application of this kind of differential equations in science,
engineering and other real life problem [1].

Several numerical methods were developed on the hands of many scholars to approximate the solution of
problem (1) such as [1-10].

In order to achieve better accuracy and reduce execution time, hybrid block methods were first introduced
according to [11,12] and later by [13], while hybrid methods were initially introduced to overcome zero
stability barrier occurred in block methods mentioned by Dahlquists [14]. Furthermore, this method have the
ability to change step-size besides utilizing data off-step points which contribute to the accuracy of the
methods. In hybrid block methods, step and off-step points are combined to form a single block for solving
ODEs (see [15-17]). Meanwhile, some scholars such as, [1,17] proposed an implicit one-step hybrid block
method for the direct solution of second order ordinary differential equation. Their work motivated us to
propose the treatment of second order ordinary differential equation using one-step block with equal
equidistant for solving second order IVPs directly of the form (1) using interpolation and collocation.

2 Derivation of the Method

This section shows the development of the second derivative method with single step. The discrete scheme
for the block method is constructed from the linear multistep method of the form

k-1 k
yn+k :hzajyn+j +hzzﬂjfn+j (2)
j=0 Jj=0

Using Taylor series expansion to expand individual terms in (2) and upon substitution of the expansions

back in (2), the matrix form can be written as below where the coefficients of y(’")xn are equated
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Substituting (3) in (2) gives the discrete scheme

e
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Following the same approach, which yield the following derivatives of the discrete scheme
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Adopting matrix inverse method V 1,) 25) 35V 45 VsV
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determined and expressed as shown below
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3 Analysis of our Block Method
3.1 Order of the block
Let the linear operator L{y(x): h} on (6) be
Vi =h Za_jyn+_j +h? Zﬂj fn+j ®)
23 01234,
755 e sss
Expanding v, ; and f,,  in Taylor series and comparing the coefficients of /& gives
Liy(x):hf= Coy(x)+ Cy'(x)+ -+ C A7 y" (x)+ €77y (x) 4 € b2y 2 ()4
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Definition 3.1: The linear operator L and the associate block method are said to be of order p if
C,=C =-=C,=C,, =0, C

p+2
C,.,h" 2y (x), [11].

#0. C P2 is called the error constant and implies that the

truncation error is given by 7

nk p+2

Comparing the coefficients of /1, the order of the method (6) is [6, 6, 6,06, 6]T with error constants
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3.2 Consistency

Definition 3.2: A block method is said to be consistent if its order is greater than one. From the above
analysis, it is obvious that our method is consistent [14].

3.3 Zero stability

A block is said to be zero stable if as s —> 0 if the root of the first characteristic polynomial p(r)= 0
satisﬁed| [Z:/I(]Rk_1 ]| <1, and those roots with | R| =1 must be simple. For our method,

1 0 0 0 0] [[0 0 0 0 17]
01 000/ |/00O0O0°1
p(r)=lf0 0 1 0 0|-[{0 0 0 0 1[|=0
00010/ |/0000O0°1
0000 1] (0000 1]

r4(r — 1) =0<r=0,0,0,0,1 showing that our method is zero stable [11].

3.4 Convergent

Definition 3.3: The necessary and sufficient conditions for a linear multistep method to be convergent are
that it must be consistent and zero stable. Hence our method is convergent [ 14].

3.5 Region of absolute stability

The region of Absolute stability of the derived block method was plotted using idea of [ 14].
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Fig. 1. The absolute stability region of our method

4 Numerical Experiment

The following second order initial value problems of ODEs are considered in order to examine the accuracy
of the new developed method.

Problem 1. Solve f(x, ¥, y')

With exact solution, Y (x) =e

Source: [17 and 6].

~1001y'~1000y such that y(0)=1, y'(0)=~1

1

" with A=

10

Table 1. Comparing the proposed method with [17,6] on problem 4.1

X_
values

Exact solution

Computed solution

Error in our
method

Error in [17]

Error in [6]

0.100
0.200
0.300
0.400
0.500
0.600
0.700
0.800
0.900
1.000

0.90483741803595957316
0.81873075307798185867
0.74081822068171786607
0.67032004603563930074
0.60653065971263342360
0.54881163609402643263
0.49658530379140951470
0.44932896411722159143
0.40656965974059911188
0.36787944117144232160

0.90483741803595957316
0.81873075307798185867
0.74081822068171786607
0.67032004603563930074
0.60653065971263342360
0.54881163609402643263
0.49658530379140951470
0.44932896411722159143
0.40656965974059911188
0.36787944117144232160

1.998600(-16)
1.274500(-16)
2.177100(-16)
1.927400(-16)
2.328600(-16)
2.235300(-16)
2.396400(-16)
2.340900(-16)
2.380800(-16)
2.323300(-16)

1.054712E(-14)
1.776357E(-14)
2.342571E(-14)
2.797762E(-14)
3.130829E(-14)
3.397282E(-14)
3.563816E(-14)
3.674838E(-14)
3.730349E(-14)
3.741452E(-14)

2.050000E(-11)
4.390000E(-11)
6.550000E(-11)
8.380000E(-11)
9.860000E(-11)
1.100000E(-11)
1.190000E(-11)
1.240000E(-11)
1.280000E(-11)
1.300000E(-11)
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Chart Title

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

1 2 3 4 5 6 7 8 9 10

«=@=—Exact Solution  ==@==Computed Solution

Fig. 2. Graphical solution of Problem 1

Problem 2. Solve f/(x, y, )= y'such that 1(0)=0, y'(0)=—1

1

With exact solution, V (x) =l-e" with h= ﬁ

Source: [18].

Chart Title

-0.2
-0.4
-0.6
-0.8

-1.2
-1.4
-1.6

-1.8

=@=—Exact Solution  ==@=Computed Solution

Fig. 3. Graphical solution of Problem 2
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Table 2. Comparing the proposed method with [18] on problem 4.2

x-values  Exact Solution Computed Solution Error in our Error in [18]
method

0.01 -0.10517091807564762480  -0.10517091807564922592 1.601120E(-15) 2.858824E(-15)
0.02 -0.22140275816016983390  -0.22140275816017659074 6.756840E(-15) 1.439682E(-12)
0.03 -0.34985880757600310400  -0.34985880757601930108 1.619708E(-14) 5.591383E(-11)
0.04 -0.49182469764127031780  -0.49182469764130108397 3.076617E(-14) 4.796602E(-09)
0.05 -0.64872127070012814680  -0.64872127070017958518 5.143838E(-14) 1.003781E(-08)
0.06 -0.82211880039050897490  -0.82211880039058831113 7.933623E(-14) 1.590163E(-08)
0.07 -1.01375270747047652160  -1.01375270747059227280 1.157512E(-13) 2.870014E(-08)
0.08 -1.22554092849246760460  -1.22554092849262977050 1.621659E(-13) 4.284730E(-08)
0.09 -1.45960311115694966380  -1.45960311115716994500 2.202812E(-13) 5.857869E(-08)
0.10 -1.71828182845904523540  -1.71828182845933728000 2.920446E(-13) 8.449297E(-08)

5 Conclusion

A general one-step hybrid block method with equal off-mesh point of order 6 has been successfully
developed for the direct solution of general second order IVP.

Numerical analysis shows that the developed method is consistent and zero-stable which implies its
convergence. The analysis of the new method is examined on two highly stiff second-order initial value
problems to illustrate the efficiency of the method, and we further shown the graph of exact solution and
computed result. It is obvious that our method performs better than the existing method of [6,17,18]. Hence,
the approach is an adequate one for solving special second order initial value problems.
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