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Abstract 

 
This study aim at optimizing the parameter θ of Discrete Weibull (DW) regression obtained by 

maximizing the likelihood function. Also to examine the strength of three acquisition functions used in 

solving auxiliary optimization problem. The choice of Discrete Weibull regression model among other 

models for fitting count data is due to its robustness in fitting count data. Count data of hypertensive 

patients visits to the doctor was obtained at Medicare Clinics Ota, Nigeria, and was used for the analysis. 

First, parameter θ  and β  were obtained using Metropolis Hasting Monte Carlo Markov Chain (MCMC) 

algorithm. Then Bayesian optimization was used to optimize the parameter the likelihood function of DW 

regression, given β to examine what θ would be, and making the likelihood function of DW the objective 

function. Upper confidence bound (UCB), Expectation of Improvement (EI), and probability of 

Improvement (PI) were used as acquisition functions. Results showed that fitting Bayesian DW 

regression to the data, there is significant relationship between the response variable, β and the covariate. 

On implementing Bayesian optimization to obtain parameter new parameter θ of discrete Weibull 

regression using the known β, the results showed promising applicability of the technique to the model, 

and found that EI fits the data better relative to PI and UCB in terms of accuracy and speed. 
 

Keywords: Machine learning; Bayesian optimization; Gaussian process; acquisition function; discrete 

weibull regression; medicine; count data. 
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Abbreviations 

 
   =Initial Trained Data 

   Real coordinate space of   dimensions 

   Identity matrix of    

            , matrix of dimension     

      
      

  , matrix of dimension      

 

1 Introduction 

 
Optimization problem is generally known for maximization or minimization. Objective of optimization may 

be for profit maximization or accuracy maximization. On the other hand, one may consider cost 

minimization, or loss minimization depending on the task. Bayesian optimization (BO) is in the body of 

knowledge of machine learning, and it is used to optimize difficult black-box optimization problems, where 

the objective function is costly to evaluate. BO can be used in a case where the objective function is vague. 

[1,2] pointed out that for black box optimization to take place all dimensions should have bounds on the 

search space. Bayesian optimization broadly looks into right combinations of hyperparamters that will yield 

maximum accuracy [3,4] or minimize loss such as computational cost. The works of [5] showed the case of 

minimizing uncertainty using BO technique. Also, [6,7,2] demonstrated the usefulness of machine learning 

and Bayesian Optimization in finance and portfolio management respectively. 

 

In parametric models, there is possibility for likelihood functions to be intractable and requires numerical 

computation, among techniques to obtaining parameters from intractable likelihoods is Metropolis Hasting 

MCMC algorithm based on Bayesian estimation technique. [8], provide some basic and core procedure for 

implementing Bayesian analysis, one of which include stepwise computer program-based procedure for 

obtaining target parameters from intractable likelihoods. ([8], pp. 499). Bayesian procedure involves setting 

a prior distribution combined with likelihood of a given data using Bayes rule to obtain the posterior 

distribution. Estimates of the parameters of interest are then taken from the posterior distribution. In similar 

fashion, Bayesian Optimization requires (i) generating objective function      that needs to be maximized 

or minimized (ii) building Gaussian prior (probabilistic model) for the objective function      (iii) update 

the probability distribution using samples drawn from the objective function to get a new distribution, called 

posterior distribution (iv) determine the utility function (or acquisition function), that will be used to solve 

auxiliary optimization problem, and determine where to make the next measurement. (v) given (iv), update 

the Gaussian Process posterior probability distribution (vi) repeat step (iii)-(v) until stopping criteria is met, 

that is, when the objective function is approximately maximized. 

 

Bayesian Optimization aim at optimizing hyperparameters, in machine learning a hyperparameter is always 

set before the learning, while the values of other parameters are obtained in the process of the training. One 

reason why Bayesian optimization is attractive is because it can be applied to popular black-box functions, 

as it only requires input-output process [1,9,10]. Another reason why BO is attractive is that one can 

carefully select next design to evaluate, thereby reducing computational cost. 

 

In the work of [11], the authors proposed Bayesian optimization for likelihood-free inference models, which 

are simulator-based. The authors adopted a strategy of combining probabilistic modeling with optimization 

to obtain inference for models that are likelihood-free. Some other authors who applied Bayesian 

optimization in various fields is [3,4], the authors applied BO to robot gait parameters that optimize, and 

showed reliability of BO in maximization, as it outperformed existing techniques. Another area of 

application can be found in [12]. Just like in the case of [3,4], [5] also applied Bayesian optimization to find 

a policy for robot path that would minimize uncertainty about its location and heading. In contrast with [11] 

who carried out Bayesian optimization likelihood-free inference models, we propose Bayesian optimization 

for likelihood based inference of a two parameter Discrete Weibull regression. 
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The remaining part of this paper is organized as follows, Material and Methods in section 2, which include 

details on Gaussian process, Bayesian optimization, Utility function, and hyperparamter selection, Section 3 

contains results and discussion. Finally, conclusion was drawn in section 4.  

 

2 Materials and Methods 

 
2.1 Gaussian process 

 
A Gaussian process (GP) has infinite dimension stochastic process of multivariate Gaussian distribution, and 

any finite combination of dimensions will be a Gaussian distribution. GP helps in improving global 

optimization by estimating the confidence region of a sample test. Regular method cannot be used to obtain 

the solution of intractable objective function of black-box optimization problems, owing to difficulty in 

evaluating the gradient of the object function. Therefore, Bayesian optimization can replace the unknown 

objective function, as well as difficult to evaluate problem by sequence of optimization problem, following 

Gaussian process. [13] defined Gaussian process as follows 

 

Definition 1: For a set   in     a Gaussian process can be defined as a collection of            such that 

for             and for any    , the random vector                 has a joint multivariate Gaussian 

distribution. From definition 1, GP process can be characterized by its mean function 

 

                                                                                                                                            (1) 

 

Its covariance function can be expressed as   

 

                        =                                                                           (2) 

 

The covariance function is          called kernel function is pivotal in analyzing GP. The popularly used 

kernel function is the squared exponential function, and given by 

 

       
        

 

 
                                                                                             (3) 

 

Where             

 

2.1.1 Gaussian process regression (GPR) 

 

For a set of training set             
  , the objective of GPR aim at predicting       for new inputs     

    . Bayesian technique would be used to obtain the posterior distribution for Gaussian process on 

             
   . With the assumption that observations are noise-free, that is,        

                 where   is the Gaussian process.  

 

If the new inputs are represented by    and    and conditional prediction                  Then  

 

                 
             

               
                                                                                                      

 

Where         is      matrix and entries       
         

    
    [2] showed that the vector    

             is equally Gaussian:  

 

                                     
 

Where            represents the mean vector of the posterior distribution, given as  
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2.2 Bayesian Optimization (BO) 

 
Bayesian optimization for unconstrained optimization, as well as the algorithm is presented in this section. 

The general Bayesian optimization technique for a maximization problem aim at optimizing the following 

problem: 

 

         
                   

                                                                                                                                                  

 

The objective is to compute a maximizer    of expensive-to-evaluate function    In order to apply BO to 

solve the optimization problem in equation (1), we start with an initial training set                 , for a 

design    with the corresponding objective function       .  If our prior belief is the objective function, 

provided that the data is noiseless, then Bayesian principle of combining prior belief with likelihood of the 

data using Bayes rule to obtain posterior distribution is expressed as follows. 

 

                      
 

Let the training data from initial level to   be represented by         the training set    is used to build 

statistical model which is basically a Gaussian process [14]. The posterior mean and posterior variance for 

any given design of interest   is              , and              . The posterior mean is the surrogate 

function of   at    provided    can be cheaply calculated so that it will serve as surrogate for the objective 

function  , while               serves as surrogate function of      
 

The acquisition function           is maximized at each iteration, and it also helps to identify where next 

to sample from the objective function. The acquisition function measures the benefits of estimating a new 

design   based on the surrogate model generated with    .The next model to estimate      is determined by 

solving auxiliary optimization problem that will maximize the utility function.  Iteration continues until 

when the objective function approximately maximized.   

 

2.3 Hyperparameters 

  
Hyperparameters needs to be selected, and the rule for selecting Hyperparameters is maximizing the 

likelihood of the parameters of the model, say    The likelihood is represented by            , where   

is the sample data, which its probability needs to be maximized. Let        represents a GP, then, 

  

                                                                                                                                         

 

The log marginal likelihood is usually maximized in most cases by integrating out the latent values of    so 

as to solve  

 

         
 

     

 

where               . When Gaussian noise is considered, it results to                
    , where 

      is the kernel matrix subject to kernel parameters     With Probability density function of Gaussian 

distribution the following is obtained: 

 

     
 

 
         

 

 
         

     
 

 
           

    
                                                           

 

However, [15] mentioned that      is not always convex, and can have problem of local maxima.   
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2.4 Acquisition functions 

 
In Bayesian Optimization, acquisition function is needful because it helps the search to active optimum 

results. When acquisition is maximized, it is used to determine the next point at which function will be 

evaluated. Simply put, the objective is to sample function   at                 where  ( ) which is 

generic stands for acquisition function. In the works of [1], the authors presented three types of acquisition 

functions, the acquisition functions, which include (i) the probability of improvement (PI) (ii) Expected 

improvement, and (iii) Upper confidence bound (UCB). which are considered in this paper. Once estimation 

is done with    the training set is augmented with the new training point               .  
 

2.4.1 Improvement-based acquisition function  

 

Given that               
       maximizing the probability of improvement over first   steps       is 

of great value, so that we can express Probability of improvement (PI) of   as  

 

                      
          

    
                                                                                    

 

The function      , sometimes called “maximum probability of Improvement” (MPI) is the normal 

cumulative distribution function (CDF). [1] mentioned that the formulation is primarily exploitation, that is, 

(sampling from areas of high uncertainty), and will leave out exploration, that is, (sampling areas likely to 

offer improvement over the current best observation), and that constitute a disadvantage of the formulation.  

To make up for the drawback associated with PI is to modify equation (8) by adding an adjustment 

parameter    , leading to:   
 

                        
            

    
                                                                       

 

The user is at liberty of choosing the exact value of  . What makes this formulation attractive is that in the 

process of maximizing      , it chooses the point that will most likely give an improvement of at least       
Performance of       can be found in the work carried out by [16]. Following the shortcomings identified 

with      , a more satisfying acquisition function that would capture both probability of improvement, and 

also capture the magnitude of improvement that a point can possibly yield. This would be done by 

minimizing expected deviation from the true maximum         For a new sample point we’ll have: 
 

                               
 

                 
                                                 

 

Integrating we have 
 

          
 

               
                                                                                                                 

 

The equation given in (10) has its limitation because it can only consider one-step-ahead choices. Therefore, 

[17] proposed another way of maximizing the expected improvement so that one can have many steps ahead 

as desired with respect to      .   The improvement function by [17] is defined as 
 

                      
    

 

Meaning that      is positive when prediction is higher than the best known value so far. Otherwise,      
would be set to zero. Maximizing the expected improvement follows that 
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The likelihood   of improvement on a normal posterior distribution              can be computed from 

normal PDF. 

 

         
 

       
     

               

   
  

 

The expected of improvement      is given as  

 

                           
 

       
     

               

   
 

   

   

                                                                    

 

[18] provided the result of evaluation of (7) and given as 

 

      
                                             

                                                                              
 ,   

          

    
                        (12) 

 

 

       and      represent the PDF and CDF of the standard normal distribution,        respectively. 

 

Another type of acquisition function introduced by [19,20], is the “Sequential Design for optimization” 

(SDO), the SDO chooses points to be evaluated based on either the lower confidence bound: 

 

                     
 

Where       which aim is to minimize.  

 

Or on the upper confidence bound in order to maximize  

 

                      
 

The user is left to decide the value of parameter  . In order to make Bayesian optimization to be applicable 

to solving diverse problems, [21] proposed another acquisition function, which is considered as 

instantaneous regret function.  

 

                 
 

It is designed in a way to optimize: 

 

          
 
          

 
 , 

 

Where   is the number of iterations that would run in other to optimize the function. 

 

Using the upper confidence bound selection criterion wit         and the hyperparameter       it 

follows that [21] defined Gaussian process-UCB as  

                                       

   GP-                                                                                                                                  

 

Another acquisition functions was discussed by [2]; they are entropy-based acquisition functions in the study 

by [22], the earlier works of [9] has proven to have taken care of the challenges identified in the works of 

[22]. In achieve that, [9] proposed technique called predictive entropy search (PES). Knowledge gradient-

based acquisition function (KG) was also proposed by [23], KG is a closed form of the expected 
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improvement.  What differentiate KG from EI is that KG takes account of noise and does not limit the final 

solution to a previously estimated point. Therefore, if a given data is noiseless, and the final solution is 

limited to the previous sampling, the KG acquisition function would be reduced to EI acquisition function.      

 

As a way of illustration, if the objective is to obtain the global minimum of                       , 
it simply imply that the value of   that would result in global minimum of       is required. The graph of 

                           , is shown in Figure 1. The global minimum is 0.1845. 

 

 
  

 

Fig. 1. Graph of                            
 

 

2.5 Application to parameter optimization of discrete weibull distribution  

 
2.5.1 Discrete weibull regression 

 

With respect to Discrete Weibull distribution of type III identified in the work of [24], if a random variable  

  follows a Discrete Weibull distribution with parameters         then the probability density function 

(pdf) is: 

 

             
               

                                 
                                                                                             

 

While its probability mass function would be:    

 

            
         

 
         

                                              
                                                                                        

 

The log-likelihood be given as 

 

              
 
       

 
                                                                                                               

 

   

 

 

Which precedes estimation of parameters of Discrete Weibull, from which the MLEs of q and   can be 

easily obtained by directly maximizing the log-likelihood. Discrete Weibull regression has both log link and 

logit link [25,26], for         ,    covariates, logit link follows that  



 
 
 

Adesina et al.; JAMCS, 34(6): 1-13, 2019; Article no.JAMCS.54382 

 

 

 

8 
 
 

                                                                                                                               

 

From (17)   becomes,  

 

  
    

      
                                                                                                                                                      

 

Substituting (18) into (16), we have,  

 

                 
    

      
 

  

  
    

      
 

      

                                                               

 

   

 

 

2.5.2 Data 

 

Parameter of Discrete Weibull was optimized using health data of high blood pressure patients. The data of 

total number of 181 of hypertensive patients was obtained from Medicare health facility in Ota ogun State, 

the data covers visits from July 2016 to July 2017. The response variable is count of visits of hypertensive 

patients to the doctor while the predictor is the Blood pressure control (0=poor, 1=good). The count 

regression is to determine if pressure control is responsible for visit to the doctor using Bayesian Discrete 

Weibull model. 

 

2.5.3 Implementation 

 

Metropolis Hasting Monte Carlo Markov chain [26] was used to sample from the posterior distribution of 

Bayesian Discrete Weibull with 20,000 iterations using Laplace prior, because Discrete Weibull does not 

have a conjugate prior and Laplace prior is considered a suitable prior distribution [25]. Bayesian procedure 

outlined by [26,27,28] was used to obtain parameters of interest. From the likelihood function given in (19), 

estimation for parameters             were obtained, and reported using algorithm 1. Given the parameter 

  obtained and the data, (19) was taken to be objective function, with the aim of optimizing parameter   , so 

as to obtain new values of θ using Upper confidence bound (UCB), Expectation of Improvement (EI), and 

probability of Improvement (EI) as acquisition functions. Software [29] was used to carry out the analysis. 

Package “BDWreg” by [30] was used to fit Bayesian Discrete Weibull regression, while package 

“rBayesianOptimization” by [31] was used to implement for the analysis and 5, and 50 iterations were 

carried out respectively. 

 

Algorithm 1:  Metropolis Hasting MCMC algorithm 

Initialization: Choose a starting point, say     

             do 

1. Given       generate              

2. Generate   
                    

                   
 

3. Compute                     

4. With probability             accept     and set   =        
else  

draw a random value   uniformly from the unit interval       
if      then            (accept) 

else 

                               (accept) 

end if  

end  
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Initial point for both 5 and 50 iterations was 10, making a total of 60 rounds. The tunable parameter of GP 

Upper Confidence Bound was taken to be 2.576, so as to balance exploitation against exploration. -0.0315 

and 0.4729 constitute the lower and upper bounds of each hyperparaneter, from the values theta obtained 

from algorithm. The tunable parameter of Expected Improvement and Probability of Improvement was taken 

to be 2. Square exponential was used as the Kernel (correlation function) for the Gaussian Process.  The data 

is noise-free hence, using knowledge gradient-based acquisition function would be the same as using 

expectation of improvement acquisition function. Algorithm for Bayesian optimization is described as 

follows: 

 

Algorithm 2:  Bayesian Optimization  

Input: Initial training set     hyperparameters     utility function    

for              

build GP using    

solve the auxiliary optimization problem for                 
        

Evaluate         
Update the data:  

                     
 
             

Update the hyperparamter vector      kernel function  

end for    

return    and               

 

3 Results and Discussion 

 
Table 1. Result of parameter estimation of discrete Weibull model, using count data 

 

Parameter Lower  Estimate Upper 

   1.7671 1.9509 2.3137 

   0.0295 0.4729 0.7778 

  1.5059 1.6709 1.8365 

 

Table 2. Sampler for Bayesian discrete weibull 

 

Sampler 

     Iterations:    30000           Logit :  TRUE                         Scale :  0.01  

     Rev.Jump:   FALSE         RegQ  :TRUE                         RegB  :  FALSE  

     Penalized:   FALSE         Fixed.penalty :FALSE 

Model Summary 

     AIC :  729.5721     AICc :  729.7062              BIC     :  739.1676  

     QIC :  4.034054     CAIC :  742.1676        LogPPD  :  -371.5198  

     DIC :  729.0273     PBIC :  732.0322               df      :  3 

 

Result for Bayesian estimation for Discrete Weibull model is given in Table 1 using metropolis Hasting 

MCMC to sample from the posterior distribution.  This response variable was count, while the covariate is 

blood pressure control     . The result shows that there is significant relationship between response variable, 

 , and   . Table 2 contains model selection criteria.  Figure 2 shows that              (with red unbroken 

line) are significant. 

 

Table 3 contains the value of best parameter of   resulting from posterior distribution after maximizing the 

likelihood function given in equation (19). Different acquisition functions were used at 5 and 50 iterations 

respectively.  As number of iteration increases, results become more accurate. Best parameter of   was 

obtained afterwards. The values obtained differ significantly from the one that was initially obtained with 
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Bayesian Discrete Weibull model (0.4729). The absolute difference of best parameter for 5 and 50 using 

Upper confidence bound (UCB) is 0.2626, and the absolute difference of best parameter for 5 and 50 using 

probability of improvement (PI) is 0.019, while that of Expectation of Improvement (EI) is 0.016. This 

shows that EI is more consistent among the three methods. Column 4 of Table 3 represents the round at 

which   was optimized; the rounds is between 1 and 15 for 5 iterations, while for 50 iterations it was 

between1 and 60 since initial point was specified was 10. 

 

 
 

Fig. 2. Graph showing posterior estimation of the relationship between the covariate and the response 

variable 

 

Table 3. Parameter tuning of discrete weibull model, given the data 

 

No of iterations Acq. function Best parameter Opt. round  

5 UCB 0.3855 1 

5 POI 0.1039 4 

5 EI 0.1086 1 

50 UCB 0.1226 36 

50 POI 0.1229 14 

50 EI 0.1252 54 

 

Generally, the result takes some time to return using package “rBayesianOptimization” in R. Also the 

running time for running UCB takes approximately 3 times as much as EI and UCB with 

“rBayesianOptimization” package in R.  

 

4 Conclusion 

 
In this study, Bayesian optimization procedure for likelihood-based function was given. The study aimed at 

obtaining a new parameter  , given    Therefore, making the likelihood function of Discrete Weibull the 

objective function. Three (EI, UCB, and PI) acquisition functions were used for 5 and 50 iterations 

respectively. The results obtained show practical applicability of Bayesian optimization to tuning a target 

parameter having obtained the likelihood function, which is a deviation from the works of [11]. On applying 

Bayesian technique to the resulting regression model, the results show that there is significant relationship, 

between blood pressure control of hypertensive patients and number of visits to the doctor with estimate of 

        . After subjecting the likelihood function to BO different values of   were obtained and 

presented in Table 3.  
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On comparing the three acquisition functions, the EI appear to be more consistent relative to UCB and PI 

based on computation speed and accuracy. Future work may consider implementing BO using various 

statistical software and compare based on speed, computational cost, and accuracy. The case of more than 

one covariate may also be considered in future works.      
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