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Abstract 
 

Aims/Objectives: The aim is to obtain a closed form solutions of single-dimensional structural element 
of continuously supported by an elastic foundation. Thereafter, we classify the effects of the space d 
connecting the loads on the relevant partial differential equations governing the motion of the structural 
members. The study also analysis circumstances under which resonance occur in the dynamical systems 
involving structural members. 
Study Design: The single-dimensional structural element is a partial differential equation of order fourth 
order place on elastic Winkler foundation. The Bernoulli-Euler beam traversed by two moving loads. 
Place and Duration of Study: Department of Mathematical Sciences, Adekunle Ajasin University 
P.M.B. 01, Akungba-Akoko, Nigeria, between May 2019 and September 2019. 
Methodology: The principal equation of the single -dimensional beam model is governing by partial 
differential equation of the order four. For the single -dimensional beam problem, the solution techniques 
are based on the Fourier sine transformation. The governing partial differential equation of the order four 
was reduced to sequence of second order ordinary differential equations. 
 

 
Keywords: Beam; elastic foundation; prestressed; concentrated loads; harmonic load. 
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Nomenclatures 
 
M[kg]  : Mass of the moving load 
L [m] : Length of the beam 

 txS ,   N
 :

 Shear force 

E  2/ mN
 :

 Modulus of elasticity 

 txv ,   m  : Deflection from the equilibrium  

 ,iP x t  N  :
 Moving concentrated forces 

   mkg /  : Mass of the beam per unit length L 

 0E    3/ mN : Elastic foundation modulus 

 N(x)  3/ mN  : Non-uniform prestressed 

d  m  : Space or gap between the loads 

I  4m  : Moment of inertia of the beam,  

v   sm /  :
 Constant speed 

x   m  :  
The spatial and time coordinates 

t  s  :
 Time coordinates 

  Hz  : Circular frequency of the harmonic force 

 

1 Introduction 
 
The dynamic analysis of structural elements has received very much attention because of its relevant in 
various engineering applications. The applications include the response of railroad rails to moving trains, the 
response of bridges and elevated roadways to moving vehicles, machine chain and belt drives, computer tape 
drives, floppy disks and video cassette recorders. One of the early experimenters in the field is Kenny [1]. 
He investigated the dynamic response of infinite beam on elastic foundations under the action of moving 
load of constant speed. He included in the governing equation the effects of viscous damping. The limiting 
cases of no damping and critical damping were investigated. The Winkler foundation model consisting of an 
infinite number of closely, spaced springs uniformly distributed along the structure were considered.  
Another notable researcher in this field is Stanisic. The two dimensional problems of flexural vibrations of 
plates under the action of moving masses was investigated by Stanisic et al. [2]. Only the term that measures 
the effects of rate of velocity in the path of the deflection was considered. A method based on the Fourier 
transform technique was used and only simply supported boundary conditions were considered. The 
resulting coupled second order differential equation was solved via a numerical technique. The reaction of a 
variable cross section slight beam resting on a regular elastic foundation to several moving masses was 
considered by Oni [3]. For the solution of the problem, he used the versatile technique of Galerkin to reduce 
the complex governing partial differential equation of order four with variable and singular coefficients to a 
group of ordinary differential equations. The group of ordinary differential equations was later simplified 
and solved using modified asymptotic method of Struble. Ozkaya [4] studied Non-linear transverse motion 
of a beam with simply supported carrying concentrated masses. Dasa et al. [5] worked on the free out-of-
plane vibration of a rotating beam with non-linear spring mass system using perturbation method and 
obtained the non-linear natural frequencies for a vibrating blade model. Lin et al. [6] investigated analysis of 
free vibration of a regular cross section multi-span transporting multiple spring-mass systems using Euler–
Bernoulli beam theory. Oni and Adedowole [7] considered influence of prestressed on the response to 



 
 
 

Adedowole; JAMCS, 34(6): 1-21, 2019; Article no.JAMCS.53333 
 
 
 

3 
 
 

moving loads of rectangular plates incorporating rotatory inertia correction factor. In the study, versatile 
technique of Galerkin was used to reduce the complex governing partial differential equation of order four 
with variable and singular coefficients to a set of ordinary differential equations. 
 
Yesilce and Catal [8] estimated normalized usual frequencies of the pile using carry-over matrix and 
incorporating rotatory inertia. Hosing et al. [9] carried out investigation on the solution to natural flexural 
excitation of a continuous structural element on discrete elastic support. Yusuf et al. [10] investigated free 
excitations of a several-span Timoshenko beam transporting various spring-mass systems. Frequency values 
and mode shapes for free excitation of the several-span Timoshenko single-dimensional with numerous 
spring-mass systems are obtained for diverse number of spans and spring-masses with diverse points in the 
work. Oni and Ogunyebi [11] considered the dynamic behaviour of specific number of prestressed 
Bernoulli-Euler beams with general boundary conditions to mobile evenly distributed weights. Their work 
incorporated the influence of rotatory inertia factor, prestressed (axial force) of the travelling equally 
distributed loads and as well as the effects of foundation moduli in the governing differential equation of the 
dynamical problem. 
 
Recently, Jimoh [12] studied the motion of non-uniformly prestressed tapered beams with exponentially 
varying thickness resting on Vlasov foundation subjected to travelling variable harmonic load with steady 
velocity. Jafarzadeh et al. [13] investigated transverse vibration of nano-Timoshenko beams carrying 
multiple concentrated masses. They used Dirac’s delta function to impose the mathematical model of the 
concentrated masses into the equations of motion, and presented the exact closed-form solution for this 
problem. Bakhshi [14] studied vibration behavior of rotating nanobeams. He used the local and nonlocal 
theories to model nanobeams, and reported the effects of diverse material and scale parameters on the 
mechanical behavior of them. According to the introduced literature, all the above-mentioned studies applied 
the Euler–Bernoulli beam theory, and presented without consideration of the effects of shear forces and 
rotating inertia in beams. 
 
More recently, Malesela and Sarp [15] investigated small scale effects on the fundamental frequency for a 
nanobeam with elastically restrained end conditions and moving a tip mass attached by the use of a linear 
spring to the end of the beam. Transverse Response of a Structural Member with Time Dependent Boundary 
Conditions to Moving Distributed Mass was investigated by Omolofe and Adedowole [16]. In their work, 
closed form solutions of the governing fourth order partial differential equations with variable and singular 
coefficients of a beam-mass problem were presented. Jimoh and Ajoge [17] studied the behavior of regular 
Rayleigh beam resting on Pasternak foundation and traversed by exponentially varying magnitude moving 
load. Alireza et al. [18] solved the general term of mode shape function with four undetermined coefficients 
of the non-uniform beam with mass per unit length and bending moment of inertia varying as polynomial 
functions by via the generalized power series method. 
 
Nevertheless, the case where we have two concentrated loads with constant and harmonic load is scanty in 
literatures. 
 
Thus, this study sets to investigate response of structural elements resting on elastic foundation subjected to 
two concentrated moving loads. 
 

2 Formulation of the Problem 
 
Consider a Bernoulli-Euler beam having length L and laying on an elastic foundation traverse by travelling 
weight with steady velocity governed by the partial differential equation 

  ),(),(),( txvEtxvtxvx otott     

 

  ),(),(),( 0 txPtxvxNtxS ixxx                                                        (2.0) 
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    ),(, txvxEItxS xxx                                                                      (2.1) 

 

Where  txS ,  is the shear force,  txPi ,  are the steady mobile weights acting on the structural material, � 

is the mass of the beam per unit length L,  txv ,  is the vertical deflection of the beam,  xEI  is the 

flexural rigidity of the beam, E  is  the young modulus  xN  is the non-uniform prestress, x  and t are the 

spatial and time coordinates respective. The structure under consideration is simply supported and carrying a 
concentrated mass M, which is moving at constant velocity. 
 

3 The Simply Supports Boundary Conditions 
 
The conditions at the edge of the beam depend on its constraints. In the case of simply supported beam 
whose length is L, the vertical displacement at the beam ends are given as: 
 

    0,,0  tLvtv                                                                                                               (3.0) 

 

    0,,0  tLvtv                                                                                                 (3.1) 

 
The derivative of above equation with respect to x  
 
the initial conditions of the beam is given as  
 

   0,00, xvxv tt                                                                                     (3.2) 

 

The non uniform prestress  xN  is define as 

 











L

x
NxN o


sin1)(                                                                                                   (3.3) 

 

where oN  is constant axial force 

 
Two special states of equation (2.0) are considered. They are termed steady and harmonic variable loads 
problems. 
 

4 First State of the Loads–steady Loads 
 
4.1 The dynamic behavior of structural element acted upon by the two moving steady 

loads 

 
The repeated concentrated mobile force ),( txPi  in equation (2.0) is given by  

 

 )()(),( 1 dvtxPvtxPtxP oi     

 

v

dl
t


0                                                                                                  (4.0) 
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5 Approximate Analytical Solution 
 
In this section, in order to compute the dynamic vibration of beam due to moving two loads, the non-
homogeneous principal partial differential equation of order is solved by Fourier sine transformation method 
described by  
 

    dx
L

xj
txvtjw

L 
sin,,

0
                                                        (5.0) 

 
With the inverse 
 

    dx
L

xj
tjw

L
txv

j


sin,

2
,

1






                                                                     (5.1) 

 
Thus, substituting equations (2.1), (3.3) and (4.1) into the system of equation (2.0) the result is a non- 
homogeneous system of partial differential equation is given by  
 

   tjwtjw
L

jEI

L

n

j

,,
4

2
4

1
















  

 

 tjw
L

j

L

x
N ,sin1

2

0 



















 
 

   
L

xi
jiwtjKw o


 sin,, 

 
 

 )()(1 dvtxPvtxP o                                                                                     (5.2) 

 

The value  tjw ,  in the equation above is evaluated by taking the orthogonality to the functions  
L

xm
sin    

Thus, 
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 
 




























L n

i L

x
N

L

jEI

L
0 1

0

4

sin1
4

2   

 

 tjwK
L

j
,

2




















 
 

   
L

xm

L

xj
tjwtjw


 sinsin,, 0

 
 

 

  
L

o
L

xm
dvtxPvtxP

0

1 sin)()(


                                                      (5.3) 

 

The equation (5.3) above can be rearranged to take the form 
 

           twmjbtwmjbtwmjb iii ,,, 321     

 

L

dm
P

L

ctm
P

L

ctm
P


sinsinsin 001                                                                                   (5.4) 

 

Where 
 

  11 , Imjb                                                                        (5.5a) 
 

  12 , Imjb o                                                                                     (5.5b) 

 

  1

4

3
4

, IK
L

jEI
kib

























  

 

 210

2

IIN
L

j












                                                                                                (5.5c) 

 

Next, we take the Laplace transformation dynamic system of equation (5.4) above described by 
 

  dte st  )(~                                                                                                     (5.6) 
 

In view of Laplace transform in equation (5.6), equation (5.4) becomes 
 

      )(),,,( 32
2

1 swkibSkibSkib i   

 
















22222
0

1

oo S

s
a

S
a




                                                                                                  (5.7) 

 

where  
 

L

ctm
  , 

L

dm
 

 
cos011 PPa  , 
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sin02 Pa                                                                                      (5.8) 

 
Equation (5.7) is transformed to give 
 
















22222

0
1)(

oo

i
S

s
a

S
asw




  

 

     ),,,(

1

32
2

1 kibSkibSkib 
                                                                                                 (5.9) 

 
which reduces to 
 
















2121

11

)(

1
)(

 SS
swi    

 
















22222

0
1

oo S

s
a

S
a




                                                                                (5.10) 

 
Where 
 

 
1

2

1

31
2
2

1

2
1

2

4

2 b

bbb

b

b 



  and  

 

 
1

2

1

31
2
2

1

2
2

2

4

2 b

bbb

b

b 



                                                                                               (5.11) 

 
 The following notations are obtained in view of equation Laplace inversion of (5.10) as follows:   
 

,)(,)(
222221





 





S
sg

S

S
sg   

 

1

1
1 )(








S
sf and 

2

2
2 )(








S
sf

 

                                                                                             (5.12) 

 

The convolution of equation (5.10) is defined by 
 

2,1,)()(
0

  iduugutfgf i

t

s                                                                  (5.13) 

 

 From the convolution defined above, equation (5.10) is then express by 
 

   







 4132

2

2112

1

21

)( 







aa
e

aa
e

Ptw
tt

pi                                                                  (5.14) 
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Where 
 

)(

1

21  
pP      

 

udue ut

  cos1

0
1



  
, udue ut

  sin1

0
2



   

 

udue ut

  cos2

0
3



  
, udue ut

  sin2

0
4



                                                    (5.15) 

 

Equation (5.15) is evaluated using integration by part ones obtain the following 
 

  










 tete tt 








  sincos1

)(
111

2
1

21
                                                   (5.16) 

 












  tete tt 









  sincos1

)(
11 1

2
1

22
                                                    (5.17) 

 

  










 tete tt 








  sincos1

)(
222

2
2

23
                                                                  (5.18) 

 












  tete tt 









  sincos1

)(
22 2

2
2

24
                                                                  (5.19) 

 

Substituting equations (5.14)-(5.19) into equation (5.14) yields  
 

 












 



 

cos
)(

)( 012
1

2
1

1

PP
e

Ptw
t

pi

 

 

  







 tete tt 



  sincos1 111

 
 














  teteP tt 




  sincos1sin 11 1

0

 
 

 






 



 

cos
)(

012
2

2
2

2

PP
e t

 

 

  







 tete tt 



  sincos1 222

 

 

  

  

sincos1sin 22 2
0
























  teteP tt 




 

                                                   (5.20) 
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The equation (5.20) above is substituted into (5.1) which gives us the expression below 
 

 
 













n

i

t

p PP
e

Ptxv
1

012
1

2
1

cos
)(

),(
1




 

 

 

  







 tete tt 



  sincos1 111

 
 














  teteP tt 



  sincos1sin 11 1

0

 
 

 






 



 

cos
)(

012
2

2
2

2

PP
e t

 

 

  







 tete tt 



  sincos1 222

 
 

  

  

sincos1sin 22 2
0
























  teteP tt 



 

 

L

xm
sin                                                                                                  (5.21) 

 
The expression (5.21) is the transverse displacement of the elastic structure under concentrated loads when 

1P and 0P  are not equal 

 
If the loads are of the same value, then representation (5.21) gives 
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If the loads are of the same value, and the space connecting the two loads is zero, solution (5.22) becomes 
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6 Second State of the Loads–harmonic Variable Magnitude Loads  
 
The dynamic behavior of structural element acted upon by the two moving harmonic variable magnitude 
loads. 
 

Here, the moving force ),( txPi  is given as  
 

  )()(sin),( 1 dvtxPvtxPttxP oi                                                                      (6.0) 

 
where all parameters are as defined as before. Thus in view of equation (2.0) taking into account (6.0) one 
obtains 
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The above Equation (6.1) is the principal equation relating the motion of elastic beam under the influence of 
two forces of varying magnitude. The section also follows the same approach in the case I, the transverse 

motion ),( txva  of beam acted upon by the action of variable magnitude mobile force can be written as 
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With the inverse 
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 Repeating or following the same pattern as in the previous section, one obtains 
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Putting into consideration 
thh  particle of the whole system of moving loads we have 
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Subjecting equation (6.5) as defined previously yields   
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Where 
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By following the same procedure as in equation (5.10) and the convolution theory, equation (6.6) becomes 
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which on inversion yields 
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7 Analysis for Resonance in the Dynamic System 
 
The resonance phenomenon of our dynamic system is analyzed at this junction. There are situations whereby 
vibrations go beyond certain limit. Taking a close look at equation (5.23), it is observe that the elastic beam 
resting on elastic foundation will experience resonance effects whenever 
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Equation (6.10) follows similar trend for the same beam when harmonic variable magnitude moving loads is 
considered in place of steady load. 
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2 or   and also  

 
2
2

2
2

2
2

2
1   or                                                                                   (7.2) 

 

8 Comments on the Numerical Results 
 
We shall illustrate the analysis proposed in this paper by considering a beam by adopting beam parameters 
and material properties defined in Oni and Ogunyebi 2008 [11]. These properties are of modulus of elasticity

2910109.2 mkgE  , moment of inertia
431087698.2 mI   and the mass per unit length of the 

beam mkg291.2758 . The beam span in this study is taking to be L= 50.192m.  Foundation moduli 

of the beam are taken in range of 2 x 106 N/m3 and 4 x 106 N/ m3. The range of prestress 0N  is in between 0 

N/ m3 and 6 x104 N / m3. The results are as shown on the various graphs below for the simply supported 
boundary condition so far considered. 

 

 
 

Fig. 1. Dynamic deflection for Euler–Bernoulli beam under two steady concentrated moving loads 

with different values of foundation moduli 0E  

 
Figs. 1 and 6 illustrate the response of Euler–Bernoulli beam under the two travelling loads are of constant 

and variable magnitude respectively for different values of foundation modulus 0E . It is observed that an 

increase in the foundation modulus 0E  resulted to decrease in the amplitude of vibration. 

 

Figs. 2 and 7 depict the influence of prestress 0N  on the deflection profile of the beam in both cases of 

steady and variable moving loads respectively. It is evidenced that higher values of prestress 0N  reduce the 
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pulsation of the beams. Figs. 3 and 8 depict that as the distance d  apart of the two loads 0P  and 1P  

increases, the deflection of Euler–Bernoulli beam decreases. 
 

 
 

Fig. 2. Dynamic deflection for Euler–Bernoulli beam under two steady concentrated moving loads 

with different values of prestress 0N
 

 

 
 

Fig. 3. Dynamic deflection for Euler–Bernoulli beam under two steady concentrated moving loads 

with various space or gap d  apart of the loads 
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Fig. 4. Dynamic deflection for Euler–Bernoulli beam under two steady concentrated moving loads 

with different values of the loads 1P
 

 

 
 

Fig. 5. Dynamic deflection for Euler–Bernoulli beam under two steady concentrated moving loads 

with different values one of the loads 0P  
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Fig. 6. Dynamic deflection for Euler–Bernoulli beam under two Harmonic variable magnitude moving 

loads with different values of foundation moduli 0E  

 

 
 

Fig. 7. Dynamic deflection for Euler–Bernoulli beam under two Harmonic variable magnitude moving 

loads with different values of prestress 0N  

 

From the graphs in Figs. 4 and 9 display the effect of various magnitudes of travelling loads 1P  on the 

Euler–Bernoulli beam when 1P  is steady and variable magnitude respectively. The graphs show that the 

response amplitude increases as the value of the 1P  increases. Similarly, Figs. 5 and 10 display the effect of 
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various magnitude of travelling loads 0P  on the Euler–Bernoulli beam when 0P  is steady and variable 

magnitude respectively. The graphs show that the response amplitude increases as the value of the 0P  

increases. 
 

 
 

Fig. 8. Dynamic deflection for Euler–Bernoulli beam under two Harmonic variable magnitude moving 

loads with various space or gap d  apart of the loads 
 

 
 

Fig. 9. Dynamic deflection for Euler–Bernoulli beam under two Harmonic variable magnitude 

concentrated moving loads with different values of the loads 1P  
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Fig. 10. Dynamic deflection for Euler–Bernoulli beam under two Harmonic variable magnitudes 

concentrated moving loads with different values one of the loads 0P  

 

 
 

Fig. 11. Comparison of the amplitude of vibration Euler–Bernoulli beam subjected to steady and 
Harmonic variable magnitudes concentrated moving loads with respect to time 

 
The Comparison of the amplitude of vibration Euler–Bernoulli beam subjected to steady and Harmonic 
variable magnitudes concentrated moving loads with respect to time is depicted in Fig. 11. The response 
amplitude of variable magnitude moving load is higher than that of the constant magnitude moving load. 
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9 Conclusion 
 

(i) The dynamic response amplitudes of beam decreases as the distance d between the loads increases 
when the values of the beam parameters, prestressed 

0N  and foundation modulus 
0E  are fixed. 

(ii) Increase in the values of foundation modulus 
0E  reduces the displacement response of the elastic 

beam for fixed value prestressed 
0N . 

(iii) As the value of prestressed 
0N  increases, the displacement response of beam decreases for fixed 

values of foundation modulus, 
0E , the distance d  between the loads. 

(iv) Increase in the values of the beam parameters namely foundation modulus 
0E , and prestressed 

0N  

reduce amplitude of vibrating system involving beam under the actions of concentrated moving two 
loads increases and the risk of resonance is sufficiently reduced. 
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