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Abstract

It has long been understood that the light curve of a transiting planet constrains the density of its host star. That fact
is routinely used to improve measurements of the stellar surface gravity and has been argued to be an independent
check on the stellar mass. Here we show how the stellar density can also dramatically improve the precision of the
radius and effective temperature of the star. This additional constraint is especially significant when we properly
account for the 4.2% radius and 2.0% temperature systematic errors inherited from photometric zero-points, model
atmospheres, interferometric calibration, and extinction. In the typical case, we can constrain stellar radii to 3% and
temperatures to 1.75% with our evolutionary-model-based technique. In the best real-world cases, we can infer
radii to 1.6% and temperatures to 1.1%—well below the systematic measurement floors—which can improve the
precision in the planetary parameters by a factor of two. We explain in detail the mechanism that makes it possible
and show a demonstration of the technique for a near-ideal system, WASP-4. We also show that both the statistical
and systematic uncertainties in the parallax from Gaia DR3 are often a significant component of the uncertainty in
L* and must be treated carefully. Taking advantage of our technique requires simultaneous models of the stellar
evolution, bolometric flux (e.g., a stellar spectral energy distribution), and the planetary transit, while accounting
for the systematic errors in each, as is done in EXOFASTv2.

Unified Astronomy Thesaurus concepts: Exoplanet astronomy (486); Planet hosting stars (1242); Stellar
evolutionary models (2046); Spectral energy distribution (2129); Measurement error model (1946); Exoplanet
detection methods (489); Transit photometry (1709)

1. Introduction

Any measurement of the mass, radius, or temperature of an
exoplanet depends directly on those same quantities for its host
star. As a result, the exploding interest in exoplanets has
rekindled a broad interest in measuring precise and accurate
stellar parameters in order to derive precise and accurate
planetary parameters. This has correctly given rise to the oft-
repeated phrase “know thy star, know thy planet.”

Precise parallax measurements and all-sky, precise optical
photometry by Gaia (Gaia Collaboration et al. 2016, 2018),
coupled with all-sky infrared photometry from the Two Micron
All Sky Survey (2MASS; Skrutskie et al. 2006) and the Wide-
field Infrared Survey Explorer (WISE; Wright et al. 2010),
have enabled a new era of precision stellar astrophysics. Now,
for nearly all exoplanet host stars, the uncertainties in stellar
parameters are no longer limited by the measurements, but by
the stellar evolutionary and atmospheric models, as well as
their calibrations, requiring an understanding of the underlying
systematic errors in those models and methods. We need great
care not to be overly confident in our results, but we must also
not be overly conservative, lest we fail to recognize the
significance of a precise detection.

Tayar et al. (2022) published a guide for reasonable
systematic error floors by carefully enumerating the sources
of systematic error, tracing fundamental calibrations back to
their origins, and determining the discrepancies between
different groups with different instruments and different

models. They find systematic errors that are larger than
uncertainties often quoted in the exoplanet community.
However, Tayar et al. (2022) do not consider the impact of

an additional constraint for transiting exoplanet hosts: the
stellar density, ρ*, measured from the transit light curve. The
ability of the transit light curve to measure ρ* was first
recognized by Seager & Mallén-Ornelas (2003) for planets in
circular orbits. Planets in eccentric orbits complicate the
computation and generally add additional uncertainty, but with
a known eccentricity and argument of periastron (typically
from radial velocities (RVs), but also potentially through
primary and secondary transits or, in the future, astrometry), we
can still derive the stellar density from a transit light curve (see,
e.g., Eastman et al. 2019).
By definition, we need only two of the parameters stellar

mass (M*), radius (R*), density ( ρ*), or surface gravity ( *
glog )

to derive the others, as these are mathematically and exactly
related to one another. Then, we only need either the
bolometric flux (Fbol) or stellar temperature (Teff)—and a
precise distance from Gaia—to determine the other, again, by
definition.
This concept is not new. Sandford & Kipping (2017)

measured precise stellar densities of 66 Kepler planet hosts to
help characterize the star. Beatty et al. (2017) argued, and
Stevens et al. (2018) later expanded on the idea, that, with an
R* from spectral energy distribution (SED) fitting and ρ* from
transits, we can derive an M* free from the systematic errors of
stellar evolutionary models. Unfortunately, Stevens et al.
(2018) showed—and we will confirm—that even an optimistic
statistical uncertainty in the stellar mass we can obtain this way
is well above the ∼5% that is thought to be a realistic
systematic uncertainty in M* from stellar models. In addition,
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they still must rely on systematics-dominated determinations of
Fbol to infer the stellar radius in the first place.

Here we show an idea similar to that found in Stevens et al.
(2018), but instead of using ρ* and deriving M*with a known
R* without an evolutionary model, we use the evolutionary
model to derive a more precise R* from ρ*. Then, with a
measured L*, we derive a more precise Teff. Assuming the
systematic error floors from Tayar et al. (2022) on M* and L*
and the transit-derived measurement of ρ*, we simply
propagate those floors to significantly more precise inferred
values of R* and Teff than the measurement floors found by
Tayar et al. (2022) using models alone. We go through the
math in Section 2 and discuss systematic errors in Section 3.
We talk about best practices in Section 4. Finally, we look at a
best-case scenario in refitting WASP-4b in Section 5, and we
discuss the implications of this work in Section 6.

2. Mathematical Validation

Throughout this paper, we explain the logic of how the
constraints apply by discussing the path through the primary
constraints serially. Then, when we propagate the errors, we
assume that we have independent measurements of each
quantity at each step. In reality, the constraints are not
independent, and such a serial derivation would erroneously
count each measurement multiple times. We must fit all models
with all constraints simultaneously within a global model to
avoid this. However, the error propagation within such a global
model is complex and makes it difficult to develop an
understanding of where the information comes from. The
excellent agreement between the errors we derive with our
simplified, analytic approach and the global, simultaneous
model performed by EXOFASTv2 implies that the correlations
between constraints are minimal and validates our simplifica-
tion as a useful pedagogical tool to develop this critical
intuition. For details about how EXOFASTv2 implements these
model systematic floors within our simultaneous global model,
we refer the reader to the stellar model section of Eastman et al.
(2019).

2.1. M* from R*

First, we rederive results similar to those of Stevens et al.
(2018), which uses R* from an SED analysis and ρ* from a
transit light curve to determine M*. We start with the definition
of the stellar density,
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Assuming Gaussian and uncorrelated errors, we can use
standard error propagation techniques to show that the
uncertainty in M*, s *M , is given by
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where sr
*
is the uncertainty in the stellar density measured

from transits and s
*R is the uncertainty in the stellar radius

derived from Fbol.
To evaluate Equation (2), we solve Equation (1) for M*,
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This equation simplifies dramatically and makes the error
dependence more intuitive if we divide both sides by *

M 2

(Equation (3)) to express the uncertainties as fractions:
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In Figure 1, we show a contour plot of the percent error in
M* as a function of the percent errors in ρ* and R*, using
Equation (7). We see that the percent error in R* is multiplied
by a factor of three as it propagates to the error in M*, which
makes it difficult to get a small s

*M from R* and ρ*.
Stevens et al. (2018) do three simulated fits, one with e= 0

(fixed), b= 0; one with e= 0.5, b= 0; and one with e= 0
(fixed), b= 0.75, to show the dependence on the measured
precision of ρ* on the eccentricity and impact parameter. The
percent errors from their simulations on R*, M*, ρ*, and
Teff are summarized in Table 1.
While their quoted uncertainty in R* ignores the often

dominant sources of systematic error, we can still use these
results to confirm our expectations given Figure 1 and
Equation (7). Indeed, in the first case, with 5.1% errors on
ρ* and 1.6% errors on R*, Equation (2) predicts a 7.0%
uncertainty in M*, completely consistent with the measured
value of 7.3%. In the second case, with 17.1% errors on ρ* and
1.6% errors on R*, Equation (2) predicts a 17.8% uncertainty in
M*, completely consistent with the measured value of 18.3%.
And finally, in the last case, with 16.1% errors on ρ* and 1.7%

Figure 1. A contour plot of the percent error in M* as a function of the percent
errors in ρ* and R*, derived from Equation (7). We see that the dependence on
s
*R is strong, and with a typical sr

*
of 10%, the resulting constraint on M* is

not particularly informative. Even with no error in ρ*, the systematic floor in
R* of ∼4.2% implies an error of 13% in stellar mass, which is much larger than
the ∼5% presumed for masses derived from evolutionary models.

2

The Astronomical Journal, 166:132 (15pp), 2023 September Eastman, Diamond-Lowe, & Tayar



errors on R*, we predict a 17.0% uncertainty in M*, again
consistent with the measured value of 17.8%.

The uncertainty inM*, even in the best case they present and
ignoring systematic errors in Fbol when they derive R*, is well
above the ∼5% systematic uncertainties presumed in most
stellar models because the stellar radius uncertainty is
compounded, leading to a much larger percent error in the
stellar mass.

For certain ideal systems (tidally circularized, deep, well
measured, like WASP-4), the error on ρ* can be ∼1%. Even
so, coupled with the 4.2% systematics-dominated uncertainty
in R* recommended by Tayar et al. (2022), the resultant mass
uncertainty is still ∼13%. We also note that the uncertainty in
Teff from Stevens et al. (2018) is relatively large because they
have avoided using an evolutionary model, and so the SED is
working to constrain both R* and Teff.

Hence, while their method may serve as a rough,
independent check on systematics, it is unlikely to be helpful
in a significant number of cases.

2.2. R* from M*

Instead, we can infer R* from M* and ρ*. Again, starting
from Equation (1), we instead propagate the uncertainties in
M* to R*:
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As before, we evaluate and simplify by dividing both sides
by *

R 2 to express it as a percent uncertainty:
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Here we see that, instead of magnifying the errors as when
we determined M*, our input fractional errors are reduced by a
factor of 3. Thus, the resultant percent uncertainty in R* can be
much lower than the input percent uncertainties in M* and ρ*.

Figure 2 shows the same contour plot, but now with the
propagated percent error in R* as a function of percent errors in
ρ* and M* (Equation (9)). Of course, getting M* usually
requires stellar evolutionary models, but even assuming a
systematic floor of 5% on M* from stellar models, if we
measure ρ* to 1%, we get 1.7% errors on R*—almost three
times better than the recommended systematic floor in the
stellar models. And while our determination of the stellar radius
hinges on the systematics-dominated stellar evolution models,
these errors are already included in the computation as s

*M . For
everything else, we rely on well-established physics (i.e.,
Kepler’s law) and definitions (e.g., Equation (1)), though it is
important to understand the potential sources of systematic
error in ρ*, discussed in Section 3.

Assuming that our M* error is 5%, we can plot s
*R as a

function of sr
*
, as shown in Figure 3, where the break-even

point is shown as a vertical red dashed line at ∼11.5%. That is,
measuring ρ* to better than 11.5%—which is typical—allows
us to measure the stellar radius to better than the systematic
errors identified by Tayar et al. (2022).

2.3. Teff from L*

Now we can propagate the error in R* along with a
reasonable floor in L* to Teff with the definition of the stellar

Table 1
Summary of Relevant Parameters from Simulated Fits by Stevens et al. (2018)

e = b = 0 % e = 0.5, b = 0 % e = 0, b = 0.75 %

M* -
+1.146 0.092

0.075 7.3% -
+1.20 0.23

0.21 18.3% -
+1.18 0.19

0.23 17.8%

R* -
+1.046 0.016

0.017 1.6% -
+1.043 0.018

0.017 1.6% -
+1.047 0.017

0.018 1.7%

ρ* -
+1.424 0.097

0.049 5.1% -
+1.49 0.28

0.23 17.1% -
+1.46 0.21

0.26 16.1%

Teff -
+5710 140

160 2.6% -
+5740 150

160 2.7% -
+5700 140

170 2.7%

Note. Percent errors were calculated by averaging upper and lower errors.

Figure 2. A contour plot of the percent error in R* as a function of the percent
errors in ρ* and M*, derived in Equation (9). We see that the dependence on
M* is much weaker, and with a typical sr

*
of 10%, the resulting constraint on

R* can be well below the systematic floor from evolutionary models. In the
best cases, we can measure ρ* to ∼1%, resulting in R* uncertainties of ∼1.7%
—almost entirely dominated by the systematic floor in M*.

Figure 3. A plot of s
*R as a function of sr

*
, assuming s =

*
5%M . The break-

even point, where s =
*

4.2%R from Tayar et al. (2022), is shown as a vertical
red dashed line and corresponds to s ~r

*
11.5%.
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luminosity,
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where σSB is the Stefan–Boltzmann constant. Following a
similar procedure to that above, we write
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Again, we evaluate and simplify by dividing by Teff
2 to

express it in terms of fractional errors:
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We see that the fractional uncertainty in L* is cut by a factor
of 4 as it propagates to Teff, so the uncertainty in R* quickly
dominates. Even so, the uncertainty in R* is also halved,
leading to surprisingly precise determinations of Teff.

Figure 4 shows a contour plot of Equation (12), and we see
that, for the recommended systematic error floor of 2.4% on
L* from Tayar et al. (2022) and our best-case error on R* of
1.7% above, we get 0.9% errors on Teff. That is 50 K for a
solar-type star—far better than the typically assumed systema-
tic error floors on Teff, which are derived from the complexities
of calibrations and gaps in our knowledge of stellar evolution
and atmospheres. Instead, these are very simply derived from
an independent constraint on ρ* (based on Kepler’s law) and
error propagation, with well-motivated systematic error floors
on L* and M* from Tayar et al. (2022).

If we assume that s =
*

5%M , we compute the same s
*R as in

Section 2.2. Then, we assume s =
*

2.4%L and plug those into
Equation (12) to plot sTeff as a function of sr

*
, in Figure 5. The

break-even point is shown as a vertical red dashed line at
s ~r
*

10.3%. That is, measuring the precision in ρ* to better
than 10.3% can improve the precision of the Teff to better than
the 2% error floor from Tayar et al. (2022).

We note that large systematic errors in L*—far exceeding
the 2.4% suggested by Tayar et al. (2022)—are possible if we
fail to identify visual or bound companions that are blended in
the broadband photometry. This would introduce large
systematic errors in the SED model, increasing the inferred

stellar radius and/or temperature. However, these biases are
subject to the same sort of scaling—a bias of 5% in Teff would
require an undetected companion with 20% of the flux of the
primary, which would likely be detected in high-resolution
spectroscopy.

2.3.1. Bolometric Flux, Distance Systematics

We can also write the Teff uncertainty in terms of the
bolometric flux, which is the observed quantity,

⎛
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where d is the distance to the star. Following our usual
procedure, the fractional uncertainty in Teff becomes
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When the uncertainty in the distance is negligible,
Equations (12) and (14) are functionally identical. Tayar
et al. (2022) state that the vast majority of planet-hosting stars
have negligible distance uncertainties, and they ignore the
distance term, not distinguishing between systematics in
Fbol and systematics in L*.
Indeed, 75% of planet-hosting stars have fractional distance

uncertainties less than the 4.2% systematic stellar radius floor
they found, and so the uncertainty in radius usually dominates
the error budget in L*without an external constraint on
ρ* from transits. However, only 40% of planet hosts have
distance uncertainties below 1.7%—the smallest systematic
uncertainty in the radius we might expect using our method.
Therefore, the uncertainty in the parallax—and its systematic
uncertainty—is an important consideration in general, even for
nearby planet-hosting stars.
We clarify that the systematic floor quoted on L* from Tayar

et al. (2022) is entirely based on the systematic errors inherent
in Fbol, leaving an important additional source of systematic
error in the luminosity from the distance.
There has been a wide recognition that Gaia DR2 has

systematic errors in the measured parallax, with estimates
ranging from 30 to 80 μas that likely depend on magni-
tude, color, and ecliptic latitude (Lindegren et al. 2018;

Figure 4. A contour plot of the percent error in Teff as a function of the percent
errors in R* and Fbol, derived from Equation (11). We see that the dependence
on M* is much weaker, and with a typical s

*R of 3% and a systematic floor of
L* ∼ 2.4%, the resulting constraint on Teff can be ∼1.5%—well below the
systematic floor from evolutionary models, SED models, or spectra. In the best
cases, we can measure R* to ∼1.7% and Teff uncertainties of just under 1%.

Figure 5. A plot of sTeff as a function of sr
*
, assuming s =

*
5%M . The break-

even point, where s = 2.0%Teff from Tayar et al. (2022), is shown as a vertical
red dashed line and corresponds to s ~r

*
10.3%.
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Stassun & Torres 2018; Zinn et al. 2019). Gaia EDR3/DR3 is
better but still has systematics estimated at the “few tens of
μas” (Lindegren et al. 2021).

Because d is determined from the parallax ϖ,

( )
v

º


d
1

pc, 15

we can propagate the uncertainty in ϖ, σϖ, to the fractional
uncertainty in distance, σd/d, as

( )s s
v

= v

d
. 16d

We plot Equation (16) as a function of distance in Figure 6,
assuming a systematic floor of 30 μas from Gaia DR3. This
systematic floor is the dominant source in the L* computation
for stars beyond 1400 pc when we assume the s =

*
4.2%R

from Tayar et al. (2022), corresponding to 8% of planet hosts.
When we use our systematic floor of 1.7% using a precise ρ*,
the distance systematic is the dominant source of error in
L*when stars are beyond 567 pc, corresponding to 42% of
planet hosts.

Hence, these systematics cannot, in general, be ignored.
Because Gaia DR3 has significantly reduced systematic errors,
its use is highly recommended over Gaia DR2. DR4 is expected
to further reduce systematic uncertainties. It is also important to
correct for these systematics as best as possible. We note that
EXOFASTv2 includes MKTICSED, which applies the EDR3/
DR3 correction to the parallax described in Lindegren et al.
(2021), which parameterizes the systematic error as a function
of color, magnitude, and ecliptic latitude, but it is unclear what
magnitude of systematic error remains.

2.4. log g* from ρ* and R*

Measuring
*

glog from spectra is both imprecise and
inaccurate, with systematic error floors of ∼0.1 dex (Torres
et al. 2012).

However, using the same procedure as above, we can
propagate errors on ρ* and R* to *

glog and achieve a precision
more than an order of magnitude better. The fact that the transit
can constrain

*
glog has long been appreciated (e.g., Winn et al.

2008), but it has never been stated in this kind of formalism.

We start with the definition of the stellar surface gravity,
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except we refactor to put it in terms of the directly measured
ρ* instead of the systematics-dominated M*,
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and we propagate errors as before,
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Here the logs already express the
*

glog error in terms of the
fractional errors in ρ* and R*, so we just evaluate the
derivatives and simplify:
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We show the contour plot of Equation (20) in Figure 7,
noting that the error in

*
glog is in dex, not percent as for

previous, similar plots. A typical spectroscopic constraint on

*
glog is 0.1 dex, which is more than an order of magnitude

worse for the best cases where s ~r
*

1% and s ~
*

1.7%R ,
where we get an uncertainty of ∼0.008 dex.

2.5. log g* from M* and R*

In addition, even propagating sensible systematic error floors
in M* and R* from evolutionary and SED models, we can
typically determine a

*
glog that is still more than twice as

precise as spectra. That is, in the post-Gaia era, we should only
rely on a spectroscopic determination of

*
glog in the rare cases

where Gaia has not measured the distance of a planet host or
when the SED cannot be trusted (e.g., due to a blend).
To show this, we repeat the exercise starting from

Equation (17) and again propagate errors,
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Figure 6. A plot of the level of systematic error in Gaia as a function of
distance. The black line shows a 30 μas systematic uncertainty in Gaia DR3
estimated by Lindegren et al. (2021), which dominates the luminosity
systematics at ∼600 and ∼1400 pc when the R* uncertainties are at the
systematic limits of 1.7% and 4.2%, respectively, marked as red dashed lines.

Figure 7. A contour plot of the error in
*

glog as a function of the percent errors
in ρ* and R*, derived from Equation (19). A typical spectroscopic constraint is
0.1 dex. For precise values of ρ*, we can do more than an order of magnitude
better.
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which evaluates to
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We show the contour plot of Equation (22) in Figure 8. We can
see that for the typical exoplanet host star, which is systematics
dominated (s ~

*
5%M and s ~

*
4.2%R ), we get a

*
glog precision of ∼0.042 dex—more than a factor of two

better than spectroscopy.
If we assume that our s =

*
5%M , we compute the same s

*R
as in Section 2.2. Then, we plug those into Equation (20) to
plot s

*
glog as a function of sr

*
, in Figure 9. The break-even

point is shown as a vertical red dashed line at s ~r
*

9%. That
is, measuring ρ* to better than 9% can improve the precision of
the

*
glog to better than the 0.042 dex derived from the floors in

Tayar et al. (2022).

2.6. M* from log g* and R*

Another proposed avenue to get empirical masses for the star
when the host does not have a transiting planet is to derive
M* from a

*
glog obtained from something like Flicker (Bastien

et al. 2013, 2016) or asteroseismology plus R* from an SED. If
we propagate the fractional errors in g* and R* to M*,

⎜ ⎟⎜ ⎟ ⎜ ⎟
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝
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( )s s s
= +

* * *

* * *

M R g

2
, 23M R g

2 2 2

we see that this scaling is more favorable than when starting from
ρ*, but it still requires a precise g* to be competitive with
systematic floors when using stellar models, and the fractional
uncertainty in R* is still doubled as it propagates to M*.

We note that deriving M* from a spectroscopic
*

glog , while
possible, is unlikely to be a competitive approach since the
systematic uncertainty in a spectroscopic

*
glog is 0.1 dex

(Torres et al. 2012).

3. Systematic Errors in ρ*

Statistical errors often dominate, and when they do, they are
effortlessly propagated throughout the global model. However,

we must ensure that our method does not introduce a new
systematic error that is large compared to the systematic error
in M*. Therefore, we must ensure that the systematic errors on
ρ* from any source are below 2%, at which point the total
model systematics are dominated by the systematic error
already introduced by M*.
The derivation of ρ* from transits is straightforward and has

been done in many places (e.g., Winn 2010). For context, we
repeat it here. Starting with Kepler’s law and the known
planetary period, P,

( )
( )p

=
+*

P
a

G M M

4
, 24

P

2
2 3

we refactor in terms of ρ* and solve,
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If we wish, we can refactor Equation (25) in terms of RP and
ρP, which makes the negligible planetary term more obvious:
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Figure 3 shows that the 5% systematic error inM* dominates
as long as sr

*
2% , so here we enumerate potential sources of

systematic error to let the reader understand when systematics
in ρ*might be the dominant consideration. When the sources
of systematic error are well below that floor, no matter what
statistical precision we achieve in ρ*, we can trust the derived
uncertainties in R* and Teff.
If the companion mass is less than 20 MJ for a solar-type

star, ignoring the planetary mass entirely contributes less than
2% to the ρ*, so we drop that term moving forward, and the
fractional uncertainty in ρ* becomes

⎜ ⎟ ⎜ ⎟
⎛
⎝

⎞
⎠

⎛
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⎝
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3.1. a/R*
For the majority of systems, the most problematic comp-

onent in computing ρ* is a/R*. The constraint comes down to

Figure 8. A contour plot of the error in
*

glog as a function of the percent errors
in M* and R*, derived from Equation (22). A typical spectroscopic constraint
of 0.1 dex corresponds to 2% error for a solar-type star. When we get
systematic-error-dominated values for M* and R* (without a transit density),
we still do about 2× better than spectroscopy.

Figure 9. A plot of s
*

glog as a function of sr
*
, assuming s =

*
5%M . The break-

even point of =
*

glog 0.042 dex, where s =
*

5%M and from Tayar et al.
(2022), is shown as a vertical red dashed line and corresponds to s ~r

*
9%.
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the signal-to-noise ratio and our ability to resolve the ingress
and egress of the transit, and it is strongly degenerate with the
planet’s impact parameter. Not only is the measurement less
straightforward, but its percent uncertainty is magnified by 3
when propagating to ρ*, as we see in Equation (27).

3.1.1. Eccentricity

First, a/R* is not the observable; the transit duration is. For
nongrazing, circular orbits, the transit duration translates to a
direct constraint on a/R*, but for eccentric orbits, Winn (2010)
showed that the observable is better approximated by

( )
w

-
+* *

a

R

e

e

1

1 sin
. 28

2

This means that we must also know or assume the planetary
eccentricity and argument of periastron independently from the
light curve. Equation (79) and Figure 10 in Stevens et al.
(2018) show that, for an eccentricity known to better than
∼1.5%—and more lax for smaller eccentricities—the uncer-
tainty in e contributes negligibly to the uncertainty in ρ*. We
note that Stevens et al. (2018) assume that the covariance
between eccentricity and ρ* is negligible, which is true when
the eccentricity is measured independently. This is not true
when the eccentricity is derived from the light curve itself, but
in that case the light curve’s power to determine an independent
ρ* is limited.
Planets in very short periods can be assumed to be tidally

circularized (Adams & Laughlin 2006). Given the small impact
at low eccentricities, even if the planet is not strictly
circularized, the error introduced to ρ* is indeed negligible.

For other systems, we must rely on RVs, and we inherit the
systematic errors of the spectrograph. The impact on the
inferred eccentricity depends heavily on the spectrograph and
the planet. In many cases, particularly for hot Jupiters most
amenable to measuring ρ*, the statistical error dominates the
systematic error, but for systems where the RV semiamplitude
is comparable to the instrumental precision, the systematic
uncertainty may dominate.

Or, we can rely on the combination of the timing and
duration of both the primary and secondary transit, inheriting
the systematic errors of the photometric instrument and the
clock. This typically yields extremely precise measurements of
eccentricity, well below 1.5%.

In the future, we may be able to use Gaia DR4 to determine
the eccentricity for a handful of (nearby, long-period) transiting
systems, inheriting the systematic errors on its astrometry.

Ultimately, we need to be mindful of systematic error
sources when the eccentricity uncertainty exceeds ∼1.5%—

which is often and is likely to limit the number of stars where
we can do such measurements. A campaign to measure precise
eccentricities through secondary eclipse timing may dramati-
cally broaden the number of stars where this technique is
practical.

3.1.2. Grazing Transits

When the transit is grazing, significant degeneracies are
introduced between the duration (i.e., a/R*), inclination, and
planetary radius. Because of that degeneracy, it is unlikely that
grazing transits will provide a sufficient constraint on a/R*
(sr
*

10% ) to improve the stellar parameters.

3.1.3. Blending and Starspots

Blending from sources of light other than the star dilutes the
transit light curve, biasing ρ*, as discussed in detail by
Kipping (2014). Because blending only makes the observed
transit depth smaller than it is, it can only underestimate the
light-curve-derived stellar density. Equation (9) in Kipping
(2014) computes the bias on ρ* as a function of the observed
p= RP/R*, the observed impact parameter b, and the blend
fraction , reproduced here:

⎜ ⎟ ⎜ ⎟
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

We want to know the minimum contaminant, , that can

cause a 2% error in the stellar density, or ( ) =
r

r
*

*
0.98,obs

,true
. That

error is technically unbounded as the numerator approaches
zero, or when b= 1+ p. However, as we discussed in the
previous section, grazing planets are already problematic and
should not be used to infer the stellar density, so we will only
consider nongrazing (b< 1− p) planets.
Figure 10 shows the maximum allowed blending as a

function of b and p such that the systematic error contribution
from blending is less than the systematic error contribution
from M*. For a typical hot Jupiter (p= 0.1, b= 0.5), this
means that the maximum allowed flux from an unseen blended
companion is 3.5%, which is an important consideration.
Starspots have a similar impact to blends, though they may

make the star dimmer or brighter than its mean. For spot
modulations with a similar amplitude to that above, be mindful
of its systematic impact on ρ*. A more detailed discussion may
be found in Kipping (2014).

3.1.4. Transit Timing Variations, Transit Duration Variations, and
Long Integration Times

Transit timing variations (TTVs), transit duration variations
(TDVs), and long integration times all smear out the observed
transit and systematically bias the inferred stellar density. In
general, when TTVs are detectable, they should be accounted

Figure 10. A contour plot showing the maximum allowed unaccounted blend
in the transit light curve as a function of impact parameter b and planet-to-star
radius ratio p such that its systematic impact ρ* is below the 2% systematic
impact from M*. That is, the leftmost contour shows the family of planets
whose systematics on the light-curve-determined ρ* would be dominated by
blends larger than 3% of the host star flux. Stated differently, as long as the
unaccounted flux was less than 3%, the largest source of systematic error in the
model would come from M*.
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for, meaning that only TTVs that are undetectable will bias the
inferred stellar density. Kipping (2014) quantifies this depend-
ence as

( )s
r s

r
t*

*

G

pP N
7.5 , 30

1 3 1 3

1 3 1 4


which shows that the impact of not accounting for a 1-minute
TTV, in the worst case of a central crossing transit, is about
10% for a Jupiter-sized planet—nominally five times our floor.
For small planets, the impact is worse. Confirmed TTVs for the
hot Jupiters most amenable to the best ρ* precision are rare,
but this is an important caveat to consider. Kipping (2014) also
shows that the systematic impact of TDVs on ρ* is similar to
the impact from TTVs, but less important in practice owing to
their relative rarity. When undetectable TTVs are a concern, we
could fit for them and would naturally propagate the timing
uncertainty into the ρ* from the light curve, though this would
necessarily reduce the resultant precision of ρ*.

In general, long integration times smear out the transit in a
way that is similar to TTVs. Fortunately, the exposure times are
well-known and that smearing is easily modeled (e.g., in
EXOFASTv2, for each light curve, the user may specify the
exposure times and how many model points to interpolate).
However, failing to do so introduces important systematic
errors similar to neglected TTVs with an amplitude of the
exposure time. Price & Rogers (2014) discuss this impact in
detail, but for TESS and Kepler, that is typically well in excess
of our target 2% floor.

3.1.5. Limb Darkening

An a priori constraint on the limb darkening is often derived
from stellar atmospheric models. Theoretical limb-darkening
coefficients can differ dramatically from empirical measure-
ments, especially for nonsolar (Teff 5000 K or Teff 7000 K)
stars (Patel & Espinoza 2022). In addition, the common choice
of a quadratic limb-darkening law is not, in detail, correct. As
both a/R* and the limb darkening depend on the shape of the
transit, errors in the limb darkening may bias the inferred
values of a/R*.

With sufficiently precise light curves, we can measure the
limb darkening directly and remove the reliance on the stellar
atmospheric models. Even in simulated cases where the
theoretical limb darkening differs from the actual limb
darkening by 0.1 in each quadratic term (nominally twice the
assumed model uncertainty), its impact on the stellar
parameters is negligible. Still, we recommend that when the
light curve is sufficiently precise to directly measure the limb
darkening, theoretical limb-darkening tables (e.g., Claret &
Bloemen 2011) should not be used to further constrain them.
When using EXOFASTv2 in particular, if the reported
precision of the limb-darkening parameters is smaller than
the 0.05 systematic error assumed in the tables, the tables
should not be used.

In addition, the choice of the limb-darkening law can still
bias the fit. EXOFASTv2 only implements the quadratic limb-
darkening law, introducing a systematic error floor. However,
Mandel & Agol (2002) showed that the error introduced here is
typically below the noise floor, and thus negligible as it
propagates to ρ*.

3.1.6. Non-Keplerian Motion

The foundation of our derivation of ρ* is Kepler’s law, but
the presence of additional bodies and tidal forces means that
nothing follows Kepler’s law to infinite precision. For a system
with TTVs, a/R* changes over time, but surely that has no
impact on the stellar density. EXOFASTv2 assumes Keplerian
orbits, but computational time is the only reason we hesitate to
implement an N-body code to compute the planetary orbits.
Given that the transit duration and stellar density are never
explicitly defined in the transit model, it is likely that an
accurate computation of any non-Keplerian motion would
provide a similar constraint on the stellar density, but a detailed
investigation of this is beyond the scope of this paper.

3.2. Period

The planetary period is directly measured from the frequency
of transits, leveraged with long baselines between transits,
often resulting in part-per-billion precision in the planetary
period. However, it is worth noting that we universally
introduce a systematic error in the observed period that is
statistically significant in many systems today. Because stars
are moving with respect to the solar system barycenter frame,
there is a light-travel time effect that changes the observed
frequency of transits by the systemic velocity, γ, divided by the
speed of light, c:

( )gD =P c. 31

But the reported planetary period is universally given in the
solar system barycenter frame. Given a typical systemic
velocity of ∼10 km s−1, this ∼30 ppm effect amounts to
about 30 s in a 10-day period, which is easily measurable today
for the vast majority of transiting systems. Even EXOFASTv2,
which does transform the observed times to the target frame
before computing the model, ignores this effect because the RV
is often measured from a reference spectrum taken at an earlier
time, and so the absolute systemic velocity is often unknown.
In addition, reporting the true period in the target’s barycentric
frame would lead to confusion in propagating the ephemerides
that are practically important.
However, the impact of this error on ρ* (or any observable

we care about) is dwarfed by other errors. The 30 ppm effect is
5000 times lower than our threshold, so we safely ignore it.

4. Implementation

Despite the simplicity of the argument, in many cases a
fundamentally new approach must be developed to take
advantage of it. We can no longer simply interpolate an
evolutionary grid to find the stellar parameters, as is commonly
done. Nor can we simply separate the stellar and planetary
model, as is also often done. The additional stellar density
constraint overconstrains the evolutionary model grids, requir-
ing optimization of competing constraints while simultaneously
respecting the systematic error floors inherent in the evolu-
tionary and atmospheric models. In addition, the constraints are
often correlated in important ways, and those covariances must
be known and applied with care if iterating between the stellar
and planetary models to improve the precision of both. It is not
enough to apply Gaussian, uncorrelated priors with each
iteration.
As far as we are aware, EXOFASTv2 is unique in this

regard—among private and public exoplanet modeling
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codes. The link between the stellar density and the transit
photometry has been at the heart of EXOFAST since its
inception (Eastman et al. 2013), and the link between Teff,
R*, and L* has been coded within EXOFASTv2 since SED
fitting was added in 2017 January (Eastman et al. 2019).
Despite only deeply understanding the mechanism now,
EXOFASTv2 has long respected these relations and has been
capable of using the transit-derived density to determine
stellar parameters that are less dependent on the systematic
floors of evolutionary models.

However, until Gaia DR2 in 2018 April, we could not
always measure sufficiently precise luminosities, and up until
2020 October, we ignored systematic errors in the SED model,
which resulted in many fits with underestimated uncertainties.
In 2022 July, another update now allows users to specify their
own systematic error floors on the stellar evolutionary models
so that they may more accurately reflect those found by Tayar
et al. (2022) rather than use the default ad hoc systematic error
floors as a function of stellar mass described in Eastman et al.
(2019) and summarized in Equation (32):

( ) ( )s = - +* *M M0.03 0.025 log 0.045 log . 322

We warn the user that the sample used by Tayar et al. (2022)
consisted of near solar-type stars, and for such stars Tayar et al.
(2022) showed that the default ∼3% errors EXOFASTv2 uses
are likely slight underestimates of the systematic floors.
However, for lower-mass stars, the systematic errors are likely
much larger than the sample Tayar et al. (2022) explored, and
our default ad hoc value of ∼10% is likely more appropriate. In
addition, the detailed results from Tayar et al. (2022) were
highly system dependent, and our blanket values of the
systematic floor are simplified for the sake of presentation.

Finally, while the true nature of systematic errors is still
poorly understood, we presume that all theoretical models share
similar systematics, and so any combination of stellar
theoretical models should not drive the uncertainties below
the floors described in Tayar et al. (2022). When using multiple
theoretical models (e.g., MIST and SED) with separate floors
on the same parameters, it may be necessary to further inflate
the individual systematic errors to achieve the desired total
systematic floor in a star-only fit. Checking that the floors are as
desired with a star-only fit is a good standard practice.

5. WASP-4b

While this analytic derivation is helpful for understanding
where the information comes from and why, we assume that
errors are Gaussian and uncorrelated, which is not strictly true.
In this section, we model WASP-4b using EXOFASTv2
(Eastman et al. 2019) to confirm and validate our analytic
formulae. A Markov Chain Monte Carlo code like
EXOFASTv2 does not assume that the errors are Gaussian or
uncorrelated, and so we can check that our analytic assump-
tions are reasonable by fitting a real-world system with a
variety of constraints to check for such correlations and to see
whether they re-create our uncorrelated expectations.

WASP-4b is a planet in a short period (1.34 days) that we
can reasonably assume is tidally circularized, and so we know
the eccentricity exactly, improving the precision in ρ* (see
Section 3.1.1 and Section 5.1). In addition, it has been observed
in three TESS sectors at 2-minute cadence (which can be found
in MAST: 10.17909/t9-nmc8-f686), with a very long baseline

between the TESS observations and the eight discovery
light curves in 2007 (Wilson et al. 2008; Gillon et al. 2009;
Winn et al. 2009). Many of those discovery light curves were
observed in Sloan z’ band, and the transit is nearly edge-on,
which minimizes the covariance between density, impact
parameter, and limb darkening. Finally, the transit is very
deep (2.4%). All of these combine to enable us to measure the
stellar density of WASP-4 to extreme precision.
A detailed exploration of what contributes to the statistical

precision of ρ* and an exhaustive search for the best candidate
(s) is beyond the scope of this paper, but for the reasons above,
WASP-4 is likely among the best-suited exoplanet hosts for
measuring ρ*. At any rate, for using ρ* to measure R* and
Teff, there are diminishing returns beyond a ρ* precision of
∼2% because the systematic floor in M* begins to dominate.
Because of the way the evolutionary model is implemented

with EXOFASTv2, we can only impose error floors in derived
quantities like age, R*, [ ]Fe H , and Teff, not the grid parameters
M*, [ ]Fe H 0, and the equal evolutionary phase (EEP; see
Dotter 2016). Further, it was unclear to us how the systematic
floors from the evolutionary models might combine with the
systematic floors from the atmospheric models within EXO-
FASTv2. We presume that both are limited by our under-
standing of the underlying stellar astrophysics, and so they
should not combine as independent constraints. Instead, the
combined MIST+SED models should still be limited by these
same systematic floors: 2.4% in Fbol, 4.2% in R*, 5% in M*,
2.0% in Teff, and 0.08 dex in [ ]Fe H . However, this is
complicated by the fact that we cannot tune these final floors
directly, and the physical relation between these parameters
often means that we cannot respect all floors exactly and
simultaneously.
We began by doing a preliminary fit of only the WASP-4

host star including an SED fit of Gaia, 2MASS, and WISE
broadband photometry; a MIST stellar evolutionary model
(Paxton et al. 2011, 2013, 2015; Choi et al. 2016; Dotter 2016);
priors on [ ] = - Fe H 0.03 0.09 (Gillon et al. 2009);
parallax= 3.797± 0.061 mas (Gaia Collaboration et al.
2018); and an upper limit on the V-band extinction of
0.04278 mag based on galactic dust maps (Schlegel et al.
1998; Schlafly & Finkbeiner 2011). While a spectroscopic prior
was available for Teff, we chose not to use it, as the ∼2%
systematic uncertainty expected is much higher than the
uncertainty we expect from our method described in
Section 2.3. For reference, Wilson et al. (2008) found
Teff= 5500± 150 K using CORALIE, and Gillon et al.
(2009) found Teff= 5470± 130 K using IRFM, which is in
good agreement (0.4σ) with our final recommended value of

-
+5419 63

65 K from the MIST + transit + SED fit.
We first fit a MIST+SED model with floors in the evolutionary

model R* of 4.2%, Teff of 2.0%, and [ ]Fe H of 0.08 dex, and SED
model floors of 2.4% in Fbol, 2.0% in Teff, and 0.08 dex in [ ]Fe H .
However, the combined constraint was lower than our model
floors should be trusted. Hence, we inflated the R* and
Teff systematic floors by 2 and refit. The model floors were still
not exactly as desired because we cannot match them all at once
owing to their influence on one another. They were close, but the
best way to reconcile these competing constraints is unclear. In the
MIST+SED column of Table 3, we see that our final constraints
are close to our desired floors: 3.2% in Fbol, 3.8% in R*, 5.5% in
M*, 2.2% in Teff, and 0.084 dex in [ ]Fe H .
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It would be best to do a thorough investigation that explores
systematic differences between models similar to Tayar et al.
(2022) or Duck et al. (2022) for each modeled system and set
these floors accordingly, but this is a major effort and likely
impractical for all systems.

Next, we performed eight different fits of the WASP-4
system with all combinations of with and without the SED
model, the MIST model, and the transit model, including no
model constraints, labeled “None,” showing just our prior
constraints. Each fit was constrained with the same wide,
uniform priors summarized in Table 2, equal to five times the
68% confidence interval of the preliminary MIST+SED fit
described above. These are wide enough not to appreciably
influence fits that were reasonably well constrained, but narrow
enough to allow the fits to mix in the absence of any external
constraints, see the impact of our chosen stepping parameters,
and ensure that the only things that changed between fits were
the models used to constrain them. In the case where we do not
fit the SED, MIST, or transit model, the posteriors are equal to
these priors. All fits had the same systematic error floors
imposed where applicable.

For all fits including transits, we included the 14 discovery
RVs from CORALIE (Wilson et al. 2008); eight early,
complete light curves (Wilson et al. 2008; Gillon et al. 2009;
Winn et al. 2009); and the flattened, 2-minute SPOC TESS
light curves from sectors 2, 28, and 29. The transit data
spanned 13 yr and 3545 epochs. We disabled the limb-
darkening table look-up from Claret & Bloemen (2011) to
avoid introducing any systematic errors (Patel &
Espinoza 2022) and fit the quadratic limb-darkening
parameters in each band directly. We assumed that the orbit
was circular.

In Figure 11, we show the corner plot of the stellar
parameters for the three most relevant fits—the MIST+SED,
transit-only, and MIST+transit+SED. As expected, we see that
ρ* uncertainty is dramatically reduced with the transit, and due
to its covariance with R* and Teff, their uncertainties are also
significantly reduced. We also see that the combination of
MIST, SED, and the transit is somewhat more complex than
our mathematical assumption that the errors are Gaussian and
uncorrelated. The slight covariance between M* and R* in the
MIST+SED fit means that when we add the transit, we also
slightly improve the constraint on M* (∼10%).

As can be seen in the last column of Table 3, using MIST,
the SED, and the transit model allows us to measure the stellar
density to 1.2%. Despite the models using the floors above, we
are able to infer M* to 4.8%, R* to 1.6%, and Teff to 1.1%, in
line with our analytic expectations given such a precise ρ*. We

note that here we do not achieve the 0.9% precision expected
from Figure 4 because the uncertainty in the distance is not
negligible and we do not reach the floor in Fbol, likely because
WASP-4 is a relatively faint planet host (V= 12.5). With the
σd= 1.5%, s = 2.9%Fbol , and s =

*
1.6%R we achieve,

Equation (14) predicts a s = 1.3%Teff , in good agreement with
our measurement of 1.1%.
The improvement of the planetary parameters, summarized

in Tables 4 and 5, is also significant. However, we must be
careful because EXOFASTv2 cannot sever the connection
between the transit model and the stellar density. Table 4
shows all the fits that include the transit and so are direct
outputs from EXOFASTv2. Table 5 shows the rederived
planetary parameters using the star-only values in the
corresponding column of Table 3 combined with the transit-
observables taken from the transit-only fit—thus re-creating
methods that model the star and planet separately.
These transit-observables span all columns in Table 5 and

agree with each other to at least 0.1σ in all fits using a transit in
Table 4. Thus, comparing the MIST+Transit+SED column in
Table 4 with the MIST+SED column in Table 5 shows the
improvement in the planetary parameters that is achievable
when we account for realistic systematic floors in the stellar
models, we have a strong constraint on stellar density, and we
model the star and planet simultaneously.
Most importantly, the precision in the planet’s radius,

density, surface gravity, semimajor axis, and incident flux
improves by about a factor of two. The improvement in Teq is
equally significant, but it is likely that our statistical
uncertainties are dominated by the assumptions that there is
no albedo and perfect redistribution. However, the incident flux
is improved by a similar factor and is an important,
fundamental component of the detailed atmospheric modeling
necessary to truly understand the equilibrium temperature and
habitability more broadly.

5.1. Tidal Circularization

In general, the eccentricity of hot Jupiters is likely not
exactly zero, but ignoring the difference between its actual
eccentricity and 0 introduces a negligible error in ρ* compared
to our 2% goal (beyond which the measurement is dominated
by M* systematics).
One could reasonably argue that we should use the

observational constraints on eccentricity such that the pre-
sumption of circularity does not bias our measurement of ρ*.
However, for WASP-4 and many hot Jupiters, the observa-
tional constraints on the eccentricity are poor and do not
account for the strong theoretical expectation we have for tidal
circularization. Therefore, the observational limits represent a
very conservative upper limit on the allowed eccentricity,
which translates to an unnecessarily conservative uncertainty
on ρ*.
Wang & Ford (2011) explored the eccentricity distribution of

such short-period planets, but their sample only had a single
planet with a period comparable to WASP-4 (HD41004B), and
its eccentricity is consistent with zero ( )= -

+e 0.058 0.058
0.051 . They

had no planets with a tidal circularization timescale comparable
to the 2.8Myr we compute for WASP-4b, but all the planets in
their sample with a tidal circularization timescale of less than
1 Gyr had an eccentricity consistent with zero.

Table 2
Priors Imposed on All WASP-4b Fits

Parameter Units Prior

M* Mass (M☉) [ ]0.694, 1.104
R* Radius (R☉) [ ]0.83, 0.97
Teff Effective temperature (K) [ ]5120, 5735
[Fe/H] Metallicity (dex) [ ]-0.03, 0.09
AV V-band extinction (mag) [ ]0, 0.04278
ϖ Parallax (mas) [ ]3.7965, 0.0608
e Eccentricity 0 (fixed)
ω* Argument of periastron (deg) 90 (fixed)
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Ultimately, our goal is to compute the most precise and
accurate stellar parameters, and to do that, we believe that the
theoretical expectation of tidal circularization (at least in the
case of WASP-4b) is more reliable than our theoretical
understanding for stellar evolution. However, we should be
clear that it is still generally useful to fit for eccentricity so that
we can test the theoretical expectations of tidal circularization,
rather than assume it as we do here.

6. Discussion

Among the set of 1145 default (DEFAULT_FLAG=1)
transiting planets (TRAN_FLAG=1) in the exoplanet archive
where the stellar density and its uncertainty are populated, 56
have host stars with a fractional ρ* uncertainty less than 2%. It
grows to 426 systems if we use a threshold of 9% (where we
can beat the systematic floor in the SED/MIST-derived

*
glog ),

503 systems if we use a threshold of 10.3% (where we can beat

Figure 11. A corner plot of the WASP-4 stellar parameters. The contours show the 68% and 95% confidence intervals for the MIST+SED fit (green), the transit-only
fit (blue), and the MIST+transit+SED fit (magenta). From this, we can see just how the addition of the transit constrains the stellar density and significantly improves
the precision of R* and Teff—to well beyond the systematic floors imposed on the SED and MIST evolutionary models. The areas under each curve in the histograms
are proportional to likelihood and are normalized to have the same area between each of the fits for a given parameter. For ρ* in particular, we can see the huge impact
the transit has on shifting the probability to a narrow, high peak.
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Table 3
Median Values and 68% Confidence Interval for the WASP-4 Host Star with All Eight Combinations of Using or Not Using the SED, MIST, or Transit Constraint

Parameter Units None MIST SED MIST+SED Transit Transit+SED MIST+Transit MIST+Transit+SED

M* Mass (M☉) -
+0.88 0.13

0.15
-
+0.879 0.048

0.056
-
+0.88 0.13

0.15
-
+0.895 0.046

0.052
-
+0.91 0.14

0.13
-
+0.88 0.11

0.13
-
+0.890 0.057

0.070
-
+0.886 0.040

0.046

R* Radius (R☉) -
+0.900 0.047

0.046
-
+0.890 0.041

0.049
-
+0.890 0.038

0.044
-
+0.886 0.032

0.035
-
+0.903 0.048

0.043
-
+0.893 0.038

0.041
-
+0.898 0.020

0.023
-
+0.896 0.014

0.015

L* Luminosity (L☉) -
+0.631 0.097

0.12
-
+0.63 0.10

0.12
-
+0.624 0.028

0.029
-
+0.624 0.027

0.030
-
+0.631 0.097

0.12
-
+0.624 0.026

0.028 0.65 ± 0.11 -
+0.625 0.026

0.028

ρ* Density (cgs) -
+1.70 0.31

0.38
-
+1.76 0.23

0.24
-
+1.74 0.30

0.37
-
+1.82 0.22

0.24
-
+1.737 0.025

0.019
-
+1.737 0.025

0.019
-
+1.738 0.025

0.018
-
+1.738 0.024

0.018

glog Surface gravity (cgs) 4.473 ± 0.074 -
+4.483 0.042

0.039
-
+4.480 0.073

0.074
-
+4.495 0.042

0.041
-
+4.484 0.024

0.020
-
+4.479 0.019

0.020
-
+4.481 0.010

0.011
-
+4.4809 0.0078

0.0080

Teff Effective temp (K) -
+5430 200

210
-
+5440 190

180 5440 ± 120 5450 ± 100 5420 ± 210 5430 ± 120 -
+5470 200

180
-
+5419 63

65

[Fe/H] Metallicity (dex) −0.031 ± 0.087 −0.025 ± 0.089 -
+0.011 0.083

0.085
-
+0.012 0.080

0.082 - -
+0.031 0.090

0.091
-
+0.013 0.079

0.082 - -
+0.021 0.088

0.089
-
+0.015 0.078

0.082

R*,SED Radius1 (R☉) L L -
+0.882 0.016

0.017
-
+0.882 0.016

0.017 L 0.882 ± 0.016 L -
+0.883 0.015

0.016

FBol Bol flux ×1010 (cgs) L L -
+2.867 0.088

0.098
-
+2.870 0.088

0.095 L -
+2.866 0.082

0.092 L -
+2.867 0.082

0.088

Teff,SED Effective tempa (K) L L -
+5461 31

34
-
+5462 30

33 L -
+5461 29

31 L -
+5460 29

30

[Fe/H]SED Metallicity (dex) L L -
+0.038 0.092

0.11
-
+0.042 0.096

0.11 L -
+0.043 0.089

0.10 L -
+0.043 0.087

0.11

AV V-band ext (mag) L L -
+0.022 0.015

0.014
-
+0.023 0.015

0.014 L -
+0.023 0.015

0.014 L -
+0.023 0.015

0.014

σSED SED error scaling L L -
+1.02 0.24

0.41
-
+1.01 0.24

0.40 L -
+0.98 0.22

0.34 L -
+0.97 0.21

0.33

ϖ Parallax (mas) L L 3.791 ± 0.061 3.791 ± 0.061 L -
+3.791 0.060

0.059 L -
+3.789 0.060

0.059

d Distance (pc) L L -
+263.8 4.2

4.3
-
+263.8 4.2

4.3 L -
+263.8 4.1

4.2 L -
+264.0 4.1

4.2

[Fe/H]0 Initial metallicityb L −0.00 ± 0.11 L 0.03 ± 0.10 L L 0.00 ± 0.11 -
+0.033 0.099

0.10

Age Age (Gyr) L -
+7.0 3.7

4.4 L -
+6.2 3.9

4.7 L L -
+6.6 4.0

4.4
-
+7.3 3.8

3.7

EEP Equal evol phasec L -
+351 18

37 L -
+350 27

37 L L -
+351 23

33
-
+356 22

32

Notes. See Table 3 in Eastman et al. (2019) for a detailed description of all parameters.
a This value ignores the systematic error and is for reference only.
b The metallicity of the star at birth.
c Corresponds to static points in a star’s evolutionary history. See Section 2 in Dotter (2016).
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Table 4
Median Values and 68% Confidence Interval for the WASP-4 Host Star

Parameter Units Transit Transit+SED MIST+Transit MIST+Transit+SED

P Period (days) 1.338231512 ± 0.000000019 1.338231512 ± 0.000000019 1.338231512 ± 0.000000019 1.338231513 ± 0.000000019
RP Radius (RJ) -

+1.348 0.071
0.064

-
+1.335 0.058

0.062
-
+1.341 0.030

0.035
-
+1.339 0.021

0.023

MP Mass (MJ) 1.22 ± 0.13 -
+1.20 0.11

0.13
-
+1.210 0.081

0.086
-
+1.207 0.071

0.073

TC Time of conjunctiona (BJDTDB) 2454697.797524 ± 0.000024 2454697.797525 ± 0.000024 -
+2454697.797524 0.000023

0.000024 2454697.797524 ± 0.000023

TT Time of min proj sepb (BJDTDB) 2454697.797524 ± 0.000024 2454697.797525 ± 0.000024 -
+2454697.797524 0.000023

0.000024 2454697.797524 ± 0.000023

T0 Optimal conj timec (BJDTDB) 2455337.472187 ± 0.000022 2455348.178040 ± 0.000022 2455336.133956 ± 0.000022 2455329.442798 ± 0.000022
a Semimajor axis (au) -

+0.0230 0.0012
0.0011

-
+0.02277 0.00099

0.0010
-
+0.02287 0.00052

0.00060
-
+0.02284 0.00037

0.00040

i Inclination (deg) -
+88.87 0.51

0.67
-
+88.87 0.51

0.67
-
+88.89 0.52

0.66
-
+88.89 0.51

0.65

Teq Equilibrium temperatured (K) -
+1638 63

64
-
+1639 36

35
-
+1651 61

54
-
+1637 19

20

τcirc Tidal circ timescale (Gyr) -
+0.00277 0.00020

0.00021 0.00279 ± 0.00021 0.00278 ± 0.00019 0.00279 ± 0.00018

K RV semiamplitude (m s−1) 240 ± 12 240 ± 12 240 ± 12 240 ± 12
RP/R* Radius of planet in stellar radii -

+0.15348 0.00039
0.00047

-
+0.15349 0.00040

0.00047
-
+0.15348 0.00039

0.00047
-
+0.15348 0.00039

0.00046

a/R* Semimajor axis in stellar radii -
+5.481 0.026

0.020
-
+5.481 0.026

0.020
-
+5.482 0.026

0.019
-
+5.482 0.026

0.019

δ ( )*R RP
2

-
+0.02356 0.00012

0.00014
-
+0.02356 0.00012

0.00014
-
+0.02355 0.00012

0.00015
-
+0.02355 0.00012

0.00014

δR Transit depth in R (fraction) -
+0.03042 0.00081

0.00086
-
+0.03044 0.00082

0.00086
-
+0.03043 0.00081

0.00086
-
+0.03043 0.00082

0.00086

d ¢z Transit depth in z’ (fraction) -
+0.02781 0.00046

0.00049
-
+0.02782 0.00047

0.00049
-
+0.02782 0.00047

0.00050
-
+0.02782 0.00046

0.00049

δTESS Transit depth in TESS (fraction) -
+0.02867 0.00072

0.00076
-
+0.02869 0.00071

0.00075
-
+0.02869 0.00072

0.00075
-
+0.02868 0.00071

0.00076

τ Ingress/egress transit duration (days) -
+0.01220 0.00013

0.00017
-
+0.01220 0.00013

0.00017
-
+0.01220 0.00013

0.00018
-
+0.01220 0.00012

0.00017

T14 Total transit duration (days) 0.08992 ± 0.00014 0.08992 ± 0.00014 0.08992 ± 0.00014 0.08992 ± 0.00014
TFWHM FWHM transit duration (days) -

+0.07770 0.00018
0.00017

-
+0.07770 0.00018

0.00017
-
+0.07770 0.00018

0.00017
-
+0.07770 0.00018

0.00017

b Transit impact parameter -
+0.108 0.064

0.048
-
+0.109 0.064

0.048
-
+0.106 0.063

0.049
-
+0.106 0.062

0.048

ρP Density (cgs) -
+0.620 0.042

0.045
-
+0.624 0.041

0.042 0.621 ± 0.036 0.623 ± 0.034

log gP Surface gravity (cgs) -
+3.222 0.023

0.022
-
+3.222 0.023

0.021
-
+3.222 0.023

0.021
-
+3.222 0.023

0.021

〈F〉 Incident flux (109 erg s−1 cm−2) -
+1.64 0.24

0.27
-
+1.64 0.14

0.15
-
+1.69 0.24

0.23
-
+1.629 0.075

0.081

TS Time of eclipse (BJDTDB) 2454698.466639 ± 0.000024 2454698.466641 ± 0.000024 -
+2454698.466640 0.000023

0.000024 2454698.466640 ± 0.000023

M isinP Minimum mass ( MJ) 1.22 ± 0.13 -
+1.20 0.11

0.13
-
+1.210 0.081

0.086
-
+1.206 0.071

0.073

u1 R linear limb-darkening coeff 0.460 ± 0.041 -
+0.461 0.042

0.041 0.460 ± 0.041 -
+0.460 0.042

0.041

u2 R quadratic limb-darkening coeff -
+0.152 0.076

0.075 0.151 ± 0.076 -
+0.151 0.076

0.075
-
+0.152 0.075

0.076

u1 z’ linear limb-darkening coeff -
+0.312 0.024

0.025 0.313 ± 0.025 0.313 ± 0.025 -
+0.313 0.024

0.025

u2 z’ quadratic limb-darkening coeff -
+0.219 0.057

0.055
-
+0.218 0.057

0.056
-
+0.218 0.058

0.056
-
+0.219 0.057

0.055

u1 TESS linear limb-darkening coeff -
+0.364 0.040

0.041 0.365 ± 0.040 0.365 ± 0.040 0.365 ± 0.040

u2 TESS quadratic limb-darkening coeff -
+0.141 0.076

0.075
-
+0.139 0.075

0.074
-
+0.139 0.075

0.074
-
+0.140 0.076

0.074

Notes. See Table 3 in Eastman et al. (2019) for a detailed description of all parameters.
a Time of conjunction is commonly reported as the “transit time.”
b Time of minimum projected separation is a more correct “transit time.”
c Optimal time of conjunction minimizes the covariance between TC and period.
d Assumes no albedo and perfect redistribution.
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the systematic floor in the SED/MIST-derived R*), and 556
systems if we use a threshold of 11.5% (where we can beat the
systematic floor in the spectroscopic Teff).

These are likely a significant undercount of the number of
systems suitable to such precision given the heterogeneity of
the sample, the relative rarity of simultaneous modeling of the
star and planet, and the fact that only 30% of the default set of
transiting planets even have stellar densities populated. It is
possible that some of these densities are optimistically derived
from evolutionary models while ignoring systematic errors
rather than a transit light curve. However, only 6% of
nontransiting planets have quoted stellar densities compared
to 30% of transiting planets, implying that the transit was used
for most when available.

Regardless, this technique could likely be applied to a
significant fraction of transiting planet hosts to improve the
stellar and planetary parameters. Even nontransiting planet
hosts are likely to see improved

*
glog precision, as described in

Section 2.5, which can be used to improve spectroscopic
measurements of Teff and [ ]Fe H . While a precision similar to
what we achieve here is commonly reported in the literature,
few have accounted for the systematic uncertainties in the
stellar parameters shown by Tayar et al. (2022), and so they
may be too optimistic.
The results shown here emphasize just how important it is to

model the star along with the planet to improve the precision of
both. It is possible that a large sample of well-measured transit
light curves may even help inform stellar models. This method
is competitive with gold standard measurements like aster-
osiesmology or eclipsing binary stars but broadens the pool of
applicable stars dramatically. This, in turn, could give us a
precise probe into stellar parameters that enable us to test and
refine the evolutionary models. Because our derived parameters
are still limited by systematics in the stellar models, further
improvement in stellar models would yield additional refine-
ment with currently known stellar densities. It may even be

Table 5
Median Values and 68% Confidence Interval for WASP-4b Planet Fits, Separating the Transit and Stellar Models

Parameter Units None MIST SED MIST+SED

P Period (days) 1.338231512 ± 0.000000019
RP Radius ( RJ) -

+1.345 0.070
0.069

-
+1.330 0.061

0.073
-
+1.330 0.057

0.066
-
+1.323 0.047

0.053

MP Mass ( MJ) -
+1.19 0.12

0.14
-
+1.199 0.074

0.078
-
+1.19 0.12

0.14
-
+1.213 0.074

0.078

TC Time of conjunctiona (BJDTDB) 2454697.797524 ± 0.000024
TT Time of min proj sepb (BJDTDB) 2454697.797524 ± 0.000024
T0 Optimal conj timec (BJDTDB) 2455337.472187 ± 0.000022
a Semimajor axis (au) 0.0229 ± 0.0012 -

+0.0227 0.0010
0.0012

-
+0.02268 0.00097

0.0011
-
+0.02257 0.00081

0.00090

i Inclination (deg) -
+88.87 0.51

0.67

Teq Equilibrium temperatured (K) 1639 ± 62 -
+1643 57

55
-
+1642 38

36 1646 ± 31

τcirc Tidal circ timescale (Gyr) -
+0.00281 0.00039

0.00046
-
+0.00277 0.00025

0.00027
-
+0.00278 0.00039

0.00045
-
+0.00271 0.00025

0.00027

K RV semiamplitude (m s−1) 240 ± 12
RP/R* Radius of planet in stellar radii -

+0.15348 0.00039
0.00047

a/R* Semimajor axis in stellar radii -
+5.481 0.026

0.020

δ ( )*R RP
2

-
+0.02356 0.00012

0.00014

δR Transit depth in R (fraction) -
+0.03042 0.00081

0.00086

d ¢z Transit depth in z’ (fraction) -
+0.02781 0.00046

0.00049

δTESS Transit depth in TESS (fraction) -
+0.02867 0.00072

0.00076

τ Ingress/egress transit duration (days) -
+0.01220 0.00013

0.00017

T14 Total transit duration (days) 0.08992 ± 0.00014
TFWHM FWHM transit duration (days) -

+0.07770 0.00018
0.00017

b Transit impact parameter -
+0.108 0.064

0.048

ρP Density (cgs) -
+0.609 0.099

0.12
-
+0.630 0.088

0.094
-
+0.627 0.097

0.11
-
+0.648 0.082

0.087

log gP Surface gravity (cgs) -
+3.214 0.062

0.061
-
+3.224 0.046

0.044 3.222 ± 0.059 -
+3.234 0.044

0.042

〈F〉 Incident flux (109 erg s−1 cm−2) -
+1.64 0.23

0.26
-
+1.66 0.22

0.23 1.65 ± 0.15 -
+1.67 0.12

0.13

TS Time of eclipse (BJDTDB) 2454698.466639 ± 0.000024
M isinP Minimum mass ( MJ) -

+1.19 0.12
0.14

-
+1.198 0.074

0.078
-
+1.19 0.12

0.14
-
+1.213 0.074

0.078

u1 R linear limb-darkening coeff 0.460 ± 0.041
u2 R quadratic limb-darkening coeff -

+0.152 0.076
0.075

u1 z’ linear limb-darkening coeff -
+0.312 0.024

0.025

u2 z’ quadratic limb-darkening coeff -
+0.219 0.057

0.055

u1 TESS linear limb-darkening coeff -
+0.364 0.040

0.041

u2 TESS quadratic limb-darkening coeff -
+0.141 0.076

0.075

Notes. Values that span all columns are taken from the transit-only fit. See Table 3 in Eastman et al. (2019) for a detailed description of all parameters.
a Time of conjunction is commonly reported as the “transit time.”
b Time of minimum projected separation is a more correct “transit time.”
c Optimal time of conjunction minimizes the covariance between TC and period.
d Assumes no albedo and perfect redistribution.
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fruitful to explore how best to take advantage of the precise
stellar density and bolometric flux constraints when construct-
ing the evolutionary models themselves, as these are directly
and precisely measured for a much larger sample of stars than
are typically used to anchor stellar models.
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