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1 Introduction

The questions of compact removability for Laplace equation is studied by [1]. The uniform elliptic
equation of the second order of divergent structure is studied by [2]. The compact removability for
elliptic and parabolic equations of nondivergent structure is considered by [3], [4]. The removability
condition of compact in the space of continuous functions are constructed in the papers of [5], [6]. The
different questions of qualitative properties of solutions of uniformly degenerated elliptic equations is
studied by [7]. Uniform elliptic operator of the second order of divergent structure is considered in the
paper [8].

Let E, be n dimensional Euclidean space of the points z = (z1, ..., ). Denote by R > 0 for
Br (2%) the ball {z : |z — 2°| < R}, and by Q7 («%) the cylinder Br ( U . Further let for

2’ € En, R > 0and k > 0 . (z°) be an ellipsoid { Z( Z) < (kR)*}. Let D be a
bounded domain in E,, with the sufficiently smooth boundary of domaln 6D7 0 € D. eis a such king
of ellipsoid that D C ¢, 9B (¢) is a set of all functions, satisfying in £ the uniform Lipschitz condition
and having zero near the Oe.

Denote by « and (a1, ..., an) the vector () = au, ..., a,,. Condition on «; is given below.

Denote by W3, (D) the Banach space of the functions « (z) given on D with the finite norm

. 1/2
Hu”Wia(D) - (/ (u2 + ZAZ ($) uf) d:r) s
D =1
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where

2 i=1,m (@) = (jaly)” ZMPW

0<%<;%) (1.1)

ol
Further, let W, , (D) be a degenerated set of all functions from Cg° (D) by the norm of the space
W3 . (D). Denote by M (D) the set of all bounded in D functions.
Let E C D be some compact. Denote by A (D) the totality of all functions u (z) € C* (D),
such that u (z) = 0 at some neighbourhood of the compact E.
The compact FE is called the removable relative to the first boundary value problem for the elliptic
operator L in the space M (D), if all generalized solution of the equation Lu = 0in D\E , u |sp\p=

o1
0, u(z) € M (D), thenu(z) =0 |n D. We'll say that the function u (z) € W, (¢) is non-negative on

the set H C ¢, in the sense of WQ o (€), if there exists the sequence of the functions {u () (z)},m =
1,2, .., such that u,, (z) € B (¢), um (z) > 0forz € H and lim H“(M)_UHWI ©) =
m—r 00 2, €

The function u (z) € W3 ,, (D) is non-negative on 9D "in the sense of space” Wy, (D), if there
exists the sequence of the functions {un, (z)},m = 1,2,.., such, that u(,) (z) € C' (D), um (z) >
0forz € D and lim |u(m) — = 0. It is easy to determine the inequalities v (z) >

m—r0o0
o1
const, u(z) > v(z), u(x) <0, and also equality u (z) = 1 on the set H in the sense of W, ,, (¢), if

“ngya(s)

o1
at the same time w (x) > 1 and u (z) < 1 on H, in the sense of W ,, (¢).
Let w (z) be a measurable function in D, finite and positive for a.e. z € D. Denote by L, ., (D)
the Banach space of the functions given on D, with the norm

1/p

il ooy = | [ @@y urds) L 1<p<oo.
D

Let W, ., (D) be a Banach space of the functions given on u (), with the finite norm D.

1/p
||“HW1 (D) = (/ <UP+Z p/2|u1-|p) dx) , 1<p<oo

o1
Analogously to W2 o (D), itis introduced the subspace W, , (D) for 1 < p < oo. The space,

conjugated to Wp « (D) we'll denote by W « (D).
We’ll consider the elliptic operator in the bounded domain D C E,

n 9 9

i,j=1

In assumption, that ||a;; (z)|| is a real symmetric matrix with measurable in D elements, moreover for
all ¢ = (&1,...,&,) € E, and x € D the condition

wZA esZau aew*ZA (12)

i,j=1

is fulfilled. Here v € (0, 1] is a constant.
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The function u (z) € W3, (D) is called the generalized solution of the equation Lu = f (z) in D,

ol
if for any function n (x) € W, , (D) the integral identity

/ i aij () Ug; Ny dr = /f?]dm (1.3)
D D

i,j=1

is fulfilled.

Here f (z) is a given function from Lo (D).

Let £ C D be some compact. The function u () € W3, (D \E) is called a generalized solution
of the equation Lu = f (z) in D\ E, u(x) = 0 on 9D, if integral identity (1.3) is fulfilled for any function
n(z) € Ap (D).

We’ll assume that the coefficients of the operator L are continued in £, \ D with conditions (1.1),
(1.2). For this, it is enough to assume that a;; (x) = d§;;\; (z) forx € E,\D , 4,5 = 1,..,n, where §;;
is a Croneker symbol.

Let h(z) € Wa o (D), fO(z) € ha (D), f'(z) € Ly -1 (D), i = 1,2,..,n, are given functions.
Let’s consider the first boundary value problem

Lu= f°(x)+ Z 81;;?’), reD (1.4)
(u (@) — h(2)) € W (D) (1.5)

The function u (z) € W3 ,, (D) we'll call a generalized solution of problem (1.4)-(1.5) if for any function

ol
n (z) € Wa , (D) the integral identity

/ Z ij () Uz Moy dx = / <_f077 + Zfin%) dz
1 i—1

4,j=1 D

is fulfilled.
Our aim is to get the necessary and sufficient condition of removability of the compact E.

2 Preliminaries Statements

At first, we introduce some auxiliary statements.

Lemma 2.1. If relative to the coefficients of the operator L, conditions (1.1), (1.2) be fulfilled, then
the first boundary value problem (1.4)-(1.5) has a unique generalized solution u (x) at any h(x) €
Ws.o (D), f°(z) € ha (D), f'(z) € Lyy-1(D),i = 1,2,.,n, Atthis there exists Py (c,n) such
that, if p > po, h () € Wy o (D), f°(x) € hy (D), f* () € Ly y-1 (D), i=1,2,..,n,dD € C*, then
solution u (z) is continuous in D.

Lemma 2.2. Let relative to the coefficients of the operator L conditions (1.1), (1.2) be fulfilled. Then
any generalized solution of the equation Lu = 0 in D is continuous by Holder at each strictly internal
domain 0.

Lemma 2.3. Let relative to the coefficients of the operator L, conditions (1.1), (1.2) be fulfilled and
gr.1 < D. Then for any positive solution v (x) of the equation Lu = 0 in D the Harnack inequality is
true
sup u < Cq (y,a,n) inf u (2.1)
er,1(0) €r,1(0)

Ifatthisy € Oer,2 (0) andzr1 (0) C D, then the inequality of form (2.1) is true in ellipsoid er,1 (y) -
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Lemma 2.4. Let relative to the coefficients of the operator L conditions (1.1), (1.2) be fulfilled, and
u (z) be generalized solution of the first boundary-value problem (1.4), (1.5) at f* (z) =0, i =0, .., n.
Then if h (z) is bounded on dD in the sense of W ,, (D), then for solutionu (z) the following maximum
principle is true

infh < infu < suph,

oD D oD

where iaanh (Suph> is an exact lower (upper) bound of numbers a, for which h (z) > a (h (z) < a) on
oD
oD in the sense of W3 ,, (D).
These lemmas are proved as in paper [7].
o1
Let H C e be some compact, Vi be a set of all functions ¢ (x) € Wy, (g), such that ¢ (z) > 1

ol
on H, in the sense of W, , (¢). Let’s consider the functional

Do) = [ 3 ay @) piprde, o) € Vi

e i,7=1
The value 1Envf Jo (u) is called L capacity of the compact H relative to ellipsoid € and denoted by
peVH

cap(;) (H). In case ¢ = E,, the corresponding value is called L capacity of the compact H and
denoted by capy, (H).

ol
Lemma 2.5. There exists the unique functionu (x) € W, (¢) such thatu (x) > 1 on H in the sense
ol

ol
of Wo ,, (¢) and cap(f) (H) = Ji (u). Moreover, v (xz) = 1 on H in the sense of W ,, () .

ol ol
Proof. It is easy to see that Vi is convex closed set in W , (¢). From the fact that W, , (¢) is
a Hilbert Space, it follows the existence of unique function « (z) € Vi, on which the functional Jz, (u)
u(z) if u(z) <1
1

achieved an exact lower bound. Let {u (z)}' = { i u() )>

o1
Itis clear, that {u (z)}" € W, (¢). Moreover, {u (z)}" € V. Denoteby A* = {z:z € ¢, u(zx) > 1}.
We have

n n

Ji {u (a:)l} = / + / Z aij (x) {u}; {u}; dz = / Z aij () u;ujdx (2.2)
At \ar ) I \at+ W
On the other side, according to (1.1)
Z aij () usujde >0 (2.3)
Ay ia=t

From (2.2) and (2.3) we conclude

1 .
Jo{u(@)'} < Jr(u) = golen\fHJL (¢)
i.e., Jp {u(z)'} = Jr (u). From uniqueness of extreme function it follows, that {u (z)}' = u (=), and
lemma is proved.
The function u (x),0on which the functional J. (u) achieved its exact lower bound is called L
capacity potential of the compact H relative to the ellipsoid e.
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Lemma 2.6. Let L be a capacity potential of u (x) of the compact H relative to . Then u (x) is a
generalized solution of the equation Lu = 0ine \H , tendingto 0 on 09e¢and tol ondH inthe
sense of Wy, (€).

Proof.lt is sufficient to show the truthness of the first part of assertion of lemma. Let n(z) €
ol o1l
W (e) and n(z) > 0 on H in the sense of W, , (¢). Thenforanye > 0 (u(x)+en(z)) € Va.
Therefore
Jr (u+en) > Jr (u).
Thus

Jr () +€2JL (n) + 2 Z aij () uinjdx > Ji (u),

S ij=1

Jr (u) + 2¢ Z aij (z) winjdx > 0.

L ig=1

Tending ¢ to zero, we conclude

n

Z aij (x) uinjdz > 0. (2.4)

T od,i=1

It is easy to see as 7 (z) in (2.4) we can take any function from C* (€) with compact support in ¢ \ H .
Then

n

Z aij (z) usnjdx > 0.
e\H iy=1
Substituting 7 (x) on -n (x), we get the equality

> ay () winydz =0

g HI=1

Lemma is proved.
Let u be a charge of bounded variation, given on . We’'ll say, that the function u (z) € L1 (¢)
is a weak solution of the equation Lu = —pu, equaling to zero on g, if for any function ¢ (z) €

o1
W, (6) N C (€) the integral identity
/uchdx = /cpd,u.

is fulfilled. )
According to lemma 2.1 (at h = 0) there exists the continuous linear operator H from W, , (¢) in
o1 w1
W .« (€), such that for any functional T' € W, , (¢), the function w = H (T') is an unique generalized
1

solution of the equation Lu = T'in W, , (¢).
The operator H is called Green operator.

w1

By lemma 2.1 this operator at p > po we transform W , (¢) to C (€). It is easy to see, that the
function u (x) is weak solution of the equation Lu = —pu, equaling to zero on Je, iff for any function
¥ (z) € C (€) the integral identity

/ wbdr = / H () dp. (2.5)
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is fulfilled.
By analogy with [8] we can show that for each measure p on e there exists the unique weak

solution of the equation Lu = —p equallng to zero on Oke.
Let’s say, that the charge u € WQ .o (¢) if there exists the vector f (z) = (f° (z), f' (z),.... f* ()
1

O (x) € ha(e), fi(x) € Loy, (¢),4=1,2,..,n, for any function ¢ (z) € V(E/Q,a (e) N C (&) the integral

identity
)= /sodu = / (f"so Zfﬂpl) da.

8

is true.
So, it is obvious that

/ pdp

€

< (D llelhwy o)

Lemma 2.7. The weak solution u (z) of the equation Lu = —pu, equaling to zero on 9de, belongs to
ol w1
W2,a (5), lff[,L S W2,o¢ (8)

ol
Proof. At first, we'll show that if the function ¢ (x) € W, , (¢) satisfies the integral identity

/ Z aij () usp;de = —/god,u (2.6)

1,7=1 e

o1
for any function ¢ (z) € W, (¢) N C (g), then it is weak solution of the equation Lu = —p, equaling
to zero on 9e. Really, assuming ¢ = H (v), ¥ (z) € C () we obtain

/H(w)du /tpdu— /Zau ) uip;dz

1,7=1

/ Z aij () ©5); dm—/uLtpdaz—/uwdm,

i,j=1 -

and now it is sufficient to use the identity (2.5). We’ll show that 1 € WM (). For this, it is sufficient to
prove, that if f*(z) = 3 ai; (x) ui (2), then £ (z) € L, At (e),i=1,2,..,n, Assume in condition
i=1

1
28)&1=...=& a1 =¢6n=.=6,=0& = :
(2.6) &1 Ei-1 =&t ¢ i3 )
We'll obtain ()
i \ T 1 .
< < : = M. .
TSN ST L.,n (2.7)
1 1
Leti # j. Assuming &, =0atk #jand k #14, & = , & = ———, we'll obtain
Xi@) V(@)
aii (z) | ajj (x) 2a;j (z) 1
2 + <2
TEAN@ TN@  aon@
Using (2.7), we conclude
o @ Syl ey hi=1 i (2.8)

Ai () Aj ()
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From (2.7) and (2.8) it follows that

M <~ lodii=1,..n (2.9)
i (x) Aj ()

Thus, from (2.9) take out for j = 1,...,n

6//\3-1(35) (fj)Qda’—e/)\jl(I) (iaij (ﬂi)ui>2dm§72nis/>\i (z)uidr <

w1
So, u € Wy, (¢). And vice versa, if u (z) is a weak solution of the equation Lu = —p, and u(z) =0
1

on 9e, then there exists u € VT/M (e), such that

<f°so - i}f"@) dr = E/godu = !uLgodac

_/u

o1
for any function ¢ (z) € W, () NC (), Ly (x) € C (€).

Z (aij (z) @j), dz = —/ Z aij () uip;de

i,j=1 e b=l

ol

Then, from lemma 2.1 we obtain that u (x) € W, , (¢). The lemma is proved.

Let now ¢ (x) be Dirac measure, concentrated at the point 0, y is an arbitrary fixed point e.

The weak solution g (z, y) of the equation Ly = —§ (z — y), such that g(x,y) = 0 on 9¢ is called
the Green function of the operator L in e.

In case ¢ = E, the corresponding function is called the fundamental solution of the operator L
and denoted by G (z, y).

According to above proved, if ¢ (z) is an arbitrary function from C (), then the generalized

o1
solution ¢ (x) € W, (¢) of the equation Ly = —1 can be introduced in the following from

¢ (y) Z/g(m,y)w(:p)d:p.

€

We can show, that g (z, y) is non-negative in € x ¢, moreover, g (z,y) = g (y, x).

Lemma 2.8. For any charge, of bounded variation on ¢ the integral

u () :/g(may)du(y)

€

exists, finite a.e. in € and is weak solution of the equation Lu = —pu, equaling to zero on O«.

Proof. Without losing generality, we’ll assume that the charge . is the measure in e. Let ¢ (z) €

ol
C(€), v (z) > 0ine. Denote by p(z) € Wa, (¢) the generalized solution of the equation Ly =
—1 (z). Then ¢ (z) € C (€) according to lemma 2.1 and v (x) > 0 according to lemma 2.4. So

@ (y) =/g(m,y)w(x)dx.

€
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Then, by Fubini theorem we conclude, that the integral [ g (z,y)du (y) there exists for almost all

x € &, moreover

[H@ ) = [ewanw) = [[s@v@dne = [v@u@an @10

Let’s note, that the equality (2.10) is fulfilled for weak non-negative and continuous in £ function
¥ (z). Now, it is sufficient to remember the identity (2.5) and lemma is proved.

Let’s consider now L-capacity of the potential « (z) of the compact H relative to the ellipsoid e.
It was proved above that u (z) satisfies the inequality (2.4) at any non-negative on H the function
n(z) € C° (¢). By the Schwartz theorem [9] there exists the measure p on H such that

/Zn: aij (x) win;dx = /ndu. (2.11)

e b=l e

ol
Further, since v = 1 on H in the sense of W, (¢), then the carrier of the measure 1 is located on
OH. The measure p is called L -capacity distribution of the compact H.
According to lemma 2.8 L-capacity potential u (x) is weak solution of the equation Lu = —p,
equaling to zero on de and can be represented in the following form

u(z) = / g (@, 2) du () (2.12)

€

On the other side, there exists the sequence of the functions {n(’”) (x)} ; m = 1,2, ..., such that
n™ (z) € B (e), n'™ (z) = 1 for z € H and

Wi 0. Assuming in equality (2.5) n(™ (z) instead of 7™, we conclude
2,al®

that the right-hand side is equal to x (H) at any natural m, while the left-hand side tends to cap(;) (H)
as m — oo. Thus,

lim Hn<m> —u
m—r o0

cap) (H) = pu (H) (2.13)
Lemma 2.9. Let relative to coefficients of the operator L conditions (1.1)-(1.2), y € 9er,2(0),

gr,1(0) C D, z € Oegr.1 (y) be fulfilled. Then for the Green function g (z,vy) the following estimations
are true

Cs (v,0,m) [eap?) (Era )] < 0(2.9) < Cu (3,0m) [eap?) (Era (0)] (2.14)
Ifer1(0) C D,z € Oer,1 (0) then

Cs [ca? Era (0)] " < 9(2,0) < Cu [eap? Era (0))] (2.15)

Proof. Without loss of generality, we can assume that the coefficients of the operator L are

continuously differentiable in . The general case is obtained by means of limit passage. Then at
x # y the function g (z, y) is continuous by z and y, moreover

;ig;g (z,y) = 00) (2.16)

Let a be a positive number, which will be chosen later, K, = {z : g (z,y) > a}, where y is an
arbitrary fixed point on dzr 2 (0). From (2.16) it follows that y is an internal point of the compact K,.
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Then L is a capacity potential K., represented in form (2.12). So it means, it is equal to zero there.
Thus,

1= /y (y,2) dpa (2)
where 1 is a L-capacity distribution of the compact K,. Let the carrier of the measure . is located
on 0K,, where g (y, z) = a. Then using (18), we obtain

c 1
o (Ka) = capiy) (Ko) = (2.17)
Let's assume now, a = ainf ( )g (z,y). According to maximum principle g1 (y) C K,. Therefore
TE er,1(Y
from (2.17) we conclude
cap® Era (1)) < cap) (Ko) = —————— (2.18)
' inf g (z,y)
z€0eR,1(y)
If weassumeb= sup g(z,y),thenzr:(y) C Ka,l.e.,
z€9eR,1(v)
cap® Ena (v)) < cap) (Ky) = ——— (2.19)
sup g (z,y)
z€0eR,1(v)
From (2.18) and (2.19) follows that
-1
inf g(z,y) < [capf> (Era (y))] < sup g(z,y) (2.20)
z€0eR,1(y) x€dep 1(y)
On the other side, according to lemma 2.3
sup g(:c,y) <Cs (’y,a,n) 1nf g(CC,y) (221)
x€er. 1(y) x€0eR,1(y)

Now, the required estimations (2.14) follows from (2.20) and (2.21). Absolutely analogously the
truthness of inequality (2.15) is proved.

Corollary 2.10. . Let the conditions of the lemma, and y € Ocr2 (0) be fulfilled, r,1 (0) C D,
x € Oer,1(0) ory = 0,2g,1 (0) C D, x € deg,1 (0). Then for the fundamental solution G (z,y) the
estimations

Ca[cap? Era (0))] " <G (@) < Ca [eaply) e 0))] 222)

are true.

3 REMOVABILITY CRITERION OF THE COMPACT IN THE
SPACE M (D)

Theorem 3.1. Let relative to the coefficients of the operator L, conditions (1.1)-(1.2) be fulfilled. Then
for removability of the compact E C D relative to the first boundary value problem for the operator L
in the space M (D) it is necessary and sufficient, that

capr (E) =0 (3.1)
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Proof. Let the ellipsoid ¢ has the same sense, that above. It is easy to see that if condition (3.1)
is fulfilled, then
cap(;) (E)=0

Without loss of generality, we can consider the case, when the coefficients of the operator L is
continuously differentiable in z. Let’s fix an arbitrary ¢ > 0 and z° ¢ D\E. By virtue of (3.1)
there exists the neighbourhood H of the compact FE, such that

capf) (F) <e (3.2)

So, we can assume that ¢ is such small, that
dist (:°, ) > dist («°, F) (3.3)

Denote by Vi (x) and pu the L-capacity potential of the compact H relative to the ellipsoid ¢ and
L-capacity of the distribution H, respectively. According to above proved

Vi (z) = / g (2. y) dyur ().

€

moreover the function Vi () is a generalized solution of the equation LVy = 0 in ¢ \ H, which is

equal to 0 on 9= and equal to 1 on dH in the sense of W3, (¢). Let now, u(x) € M (D) is an

arbitrary solution of the equation Lu = 0 in D\E, such that u(z) = 0 on 9D. Let M = sup|u|. It
D

is easy to see, that the function Vi (z) is non-negative on 0D, in the sense of W3 ., (D). Hence, it
follows, that the function u (z) — MV (z) is non-positive on & (D \ H ) generalized solution of the
equation Lu = 0 in D\ H . According to lemma 2.4 u (z) — MVy (z) < 0and D\ H in particular

U (xo) < MVyg (a:o) < M sup g (xo, y) WH (ﬁ) =M supg (:JL’O7 y) cap(LE> (F) (3.4)
yeOH yEIH

By virtue of continuity of the function g (z,y) at « # y and inequality (3.3) we obtain

sup g (z°,y) < C6 (v,,n,2°, E)
yeEOH

Thus, from (3.2) and (3.5) we conclude
u (2°) < MCee (3.5)
Using an arbitrary ¢, we get the inequality
u (mo) <0 (3.6)
Making similar considerations with the function v (z) + MV (x), we obtain
U (mo) >0 (3.7)

From (3.5)-(3.6) and an arbitrariness of the point z° it follows, that « (z) = 0 in D\E. Thereby,
the sufficiency of condition (3.1) is proved. Let’s prove its necessity. Let's assume that capr (E) >
0. Denote by ¢’ the ellipsoid, such that & C §, E C ¢’. Assume D = ¢. Further, let ug (z) be
VEe-L capacity potential of the compact E relative to the ellipsoid ¢’ and L-capacity distribution E,
respectively. Following to [10], we can give the equivalent definition of Vallee-Poussin type of L-
capacity of the compact E, relative to the ellipsoid ¢’. Let g (z,y) be a Green function of the operator
Lin €', Let's call the measure p on E, L-admissible, if x ¢ E and

VE@ = [o@ndu@) <1 for o suppn 3.8)

e/
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The value suppu (F) = cap(Ls ) (E), where an exact upper boundary is taken on all L-admissible
measures, is called L-capacity of the compact E, relative to the ellipsoid ¢’.

Analogously, the L-capacity capr, (E) is determined. At this by the standard method we show,
that there exists the uniqgue measure, on which an exact upper boundary of the functional p (F) is
reached, by the set of all L-admissible measures n.. This measure is L-capacity distribution of the
compact E.

According to the above proved, the function ug (x) is generalized solution of the equation Lug =
0in ¢’ \E, equaling to zero on d¢’. Besides, from (3.7) and maximum principle it follows that ug (z) €
M ('). On the other side ug (z) # 0, as Vg (E) > 0. Theorem is proved.

Lemma 3.2. Let relative to the coefficients of the operator L condition (1.1) be fulfilled. Then, if
y € Dera (0), then Cr (v,a,m) R™ 5" =2 < capy, (Fra () < Cs (v,a,m) R™5 2
i=1 87171 0x;

Proof. Let Lo = i 4 ()\i (z) i) Then, according to (1.1)

veapr, (Bra (y)) < capr Eri (y)) <7 capry Era (y)) - (3.9)

Letu(x) € C§° (ER’% (y)) ,u(x) =1forer, (y), moreover

_ Co(A\,n) .
lui ()| < e i=1,.,n (3.10)
Then
capr, (Er,1 (y)) < / > i (z) uida. (3.11)
r,3 W) =1

n o2
On the other side, as y € der,2 (0), then > ]‘g; = 4R? and thereby
i=1 K

| <2R™T i=1,..n.
Besides, as z € €R,3 (y), then
3 1+ %0 .
|z — yi| < §R 2 4=1,...,n.

Thus .
|$1| < |yl\ + |£E’1 — yl| < §R1+71; i=1,...,n.

Hence, it follows that

n 2
Z\ 2+X;
el <R3 (3)
=1

Therefore N
Xi () SCHER™ <Cfy R*;i=1,..,n. (3.12)

where a™ = max {1, ...,an}.
Using (3.10) and (3.12) in (3.11) we obtain
_ o fo)
capr, (Era (y)) < Cio (a,n) R *mes (€R,% (y)) =Cu(a,n) Rz 2

and by virtue of (3.9), the upper estimation of (3.8) is proved.
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For truthness of lower estimation of (3.8), we note that

capsy (Ena (1) > capry (24, 1_ () (3.13)
Besides, considering the same as in [8], we conclude
capry (E5, 2 () 2 Crz (aun) capliy (4 o () (3.14)
where g = €r, L (y).
LetW:{u(x):u(x)Cé’o(so),u( 1) =1foraee, 1 } Then
congféJ> (ER’Ql = lgva/z)\ uide. (3.15)
On the other side, if y € der,2 (0), then we can find ip, 1 < iy < n, such that yfo > @, ie.,
ARV
Yiol 2 ——F—=—
Vn
Besides, as = € ¢o, then
2
|xio - yi0| < \/'71
Therefore
[Tio| > |Yio| = |Tio — Yio| > n
Thereby
_ 1
Xi(z)>n *TMo0R; i=1,..,n. (3.16)
where o~ = min {a1,...,an}.
Using (3.16) in (3.15) we obtain
cap(L[;)) (ER e (y)) Chs (a,m) 1nf /Z R¥u}dax. (3.17)
Denote by Br (z) the ball {z : |z — z| < R}. Let’s substitute the variables v; = —"ix—;i =1,...,nin

1+ 5
(3.17) and let 7 is an image of the point y, where W = {ﬂ(’u) () C5° (Bo) i (7) = Lforv e By @j}.
Then from (3.17) we deduce By = B21f (y) where by (3.17)

capl? (n o W) 2 CraR™ 52 / Z(a%)

n o) =
= Ci3R" T2 QCap(BO) (82\1/; @))v

we’ll denote by capFo) (§ =@ (“7) the Wiener capacity of the compact B ste (ZD relative to the ball

By. Now, it is sufficient to note that cap'®® (B ( (@) = Ci4(n) and requwed estimation follow
from (3.13), (3.14) and (3.18). Lemma is proved.
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Lemma 3.3. Let relative to the coefficients of the operator L condition (1.1) be fulfilled. Then

_ n <7_
Cis (v, a,n) R"+ 3 ? < capr, (Era (y)) < Cis (v, a,n) R 2 (3.18)

Upper estimation in (3.19) is proved analogously to the estimation in (3.8). For proof of the lower
estimation, it is sufficient to note that ¢ R1 (y) C er,1(0), i.e. where

caps (.3 (8)) < capr Era (0)) (3.19)
wherey = (%R“%, 0,..., 0) and repeat the proof of the previous lemma.

Corollary 3.4. Ifconditions (1.1)-(1.2) y € 0er 2 (0) are fulfilled, then for any p € (0, R] the estimation

capr, (Ep,1 () < Ci7 (v, a,m) p" <1 + Z ( > ) (3.20)

is true.
Then v (z) € C&° (ep% (y)) () =1forz € epn (y)

vi ()] < Cis (a,m) (Oi’,.n); i=1,..,n
1+
capry (0.1 (9)) =7~ Cisp ™ Z pida. (3.21)
e, 3 !
’2

On the other side, assuming the same, as well as in the proof of lemma 3.2 we obtain the
inequality
i () < Crg (a,n) (R+p)*, z € €2 (y); i=1,...,n. (3.22)

Now, it is sufficient to take into account that

S5 <0G T (-5 6))

and from (3.21)-(3.22) the required estimation (3.20) follows.

Corollary 3.5. If conditions (1.1)-(1.2) y # 0, are fulfilled, then at x € eq)y, 1 (y), = # y for the
fundamental solution G (x,y) the estimation

(o)

2—n—-5*-
T — 2
G @) 2 O m) LUl —= (3.23)
14 ( )
Z |z —yl,
is true.
If y = 0, then estimation (3.23) is true for all z # 0. Here d = —,
n22+a
For proof, at first let’s show, that if y # 0, then y ¢ £4)), 2 (0). Really, as
~ _2
= |yl e (3.24)
i=1
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then there exists 79, 1 < ip < n, such that

|yo|ﬁ > %
n
Thus )
(|y|a)aio = p2tai’
There by
3 A 7 S 117 S (1 N
)™ = @)™ = W™ ™ (e o)

Now, it is sufficient to note that 22+2~M‘o dn < 97%a dn = 1 and the required assertion is proved. On the
other side from (3.24) it follows that for all i, 1 < i < n

2
lyil2F=i <lyl, ,

n

Z (|y|yj)a1 <n (|y|a)2'

i=1

So, we’'ll show that ¢, /= (0), if only y # 0.
Let now, for y # 0, = € eq4py),,1 (y) and = # y. Denote by |z — y|,, the p. It is easy to see that
there exists i1, 1 < i3 < n, such that

2
a2 o P
|wi1 — Yix | Fhan > n
Hence , it follows that
(@i y)® (@ ) P o’
— pai - pal = p2tain T p2to :
1 - .
Thus = ¢ ¢,.4, (v), where di = —— .Analogously, it is proved that x € €, = (y). Now, the required
pial 1+§ PV

estimation (3.23) at y # 0 follows from (2.22) and corollary 3.4 from lemma 3.2. If y = 0, then (3.23),
it immediately follows from (2.22) and lemma 2.7.

Let F (z,y) be a positive function, determined in E, x E,, continuous at x # y, moreover
ilg}vlF (z,y) = oo (condition (A)).

Further, let E C E,, be some compact. Let’s call the measure pon E [F] admissible, if sup pu C
Eand V)P (z) = [F (z,y)du(y) <1, for z € suppp.
E

The value sup u (E) = capir) (E), where an exact upper boundary is taken by all [F'] admissible
measures, is called [F]-capacity of the compact E.

Theorem 3.6. Let relative to the coefficients of the operator L conditions (1.1)-(1.2) be fulfilled. Then
for removability of the compact E C D relative to the first boundary-value problem for the operator L
in the space M (D) it is sufficient that

capir,) (E) =0 (3.25)

n S e
where F (z,y) = {1 +3 ( lyle ) } (Jz— yla)Q : .
i=1

|x_y‘a
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Proof. We'll use the following assertion, which is proved in [10]. Let function F'(z,y) satisfies
condition (A), the compact E has zero [F]-capacity, u zero measure concentrated on E. Then, there
exists the point 2° € sup pu, such that VHE (z°) = 0. So, the potential of the measure sup pu can'’t
be bounded on any portion B, i.e., for any open set B at E’ € sup pu N B, the potential VHE/ (z) is not
bound B. In particular, if B is an arbitrary neighbourhood of the point z° that VuE' (z°) = 0.

Let the condition (3.25) be fulfilled, i be an arbitrary measure, concentrated on E, z° € sup pu
is a point, corresponding to the above-stated assertion at F = F;. Let's assume at first, that 2° # 0.
Then |z°| = v > 0. Further, let B be such small neighborhood of the point z°, that if E’ € sup punB,
then

sup |y|, < (14+¢e)r, inf |y|, > (1 +¢e)r,
yeE’ yeE’

where the number ¢ > 0 will be chosen later. Let's consider the ellipsoids e4),,,1 (y) aty € E'. Let's
choose ¢ such small, than z° € €ajy|,1 (y) forally € E’. Then according to corollary 3.5 from lemma
2.7 we obtain
Vi (%) = /G (2°y) du(y) > /G (2%, y) du(y) >
El

E
> oo / Fy (2%, y) dp (y) = CaoViEF (2°) = oo
E

Hence, it follows that any zero measure y, concentrated on E can’t be L admissible. Thus capr, (E) =
0 and the required assertion follows from theorem 3.1.

Let now z° = 0. Then, using the equality G (z,y) = G (y,z) and corollary 3.4 from lemma 2.7
we conclude

V.2 (0) :/G(O,y)du(y):/G(y,O) du (y) 2020/F1 (,0) du (y)

= Co [ Fi (0,3) dia () = CV;F (0) = oc.
E

Theorem is proved.

Remark. Let condition of the real theorem be fulfilled, and the compact £ C D be removable
relative to the first boundary-value problem for the operator L in the space M (D). Then mes (E) = 0.

At first, let’'s note that the discussion of the proof is the same. As in conclusion of estimation
(3.23), we can show that at = € g1 (¥), * #y (y #0) and at x # y (y = 0) the estimations

oy L)

G (Lt, y) < Cxn (’Yv a, n) (|.T - y‘d) 2 (326)

is true.
As it was shown in theorem 3.6, if the compact £ is a removable, then according to cap_ ) (E) =
(a)

—n—-5t

0, where F; (z,y) = (|z — y\d)2

Hence, it follows that if mes (E) > 0, then there exists the point z* € E, such that V¥ (z') = oo,
where

VE (2) = /Fz (z,y) dy
E

Moreover, if B’ is an arbitrary neighborhood of the point E/ = B’ N E, then the potential V=’ (z) is
not bounded on E’. Let’s consider the case z’ # 0. Choose a small neighbourhood B’ of the point
z',thatatall x € E', y € E’ the inequality |; —v;| < 1; i = 1,...,n is fulfilled. For z € E’ we have

()
v = | (Zm —yiwfm')
i=1

2—n—-~ot (o)
E’ -

2 n 27n7T
dy</<zﬂ%—yi|> dy <

o \i=1
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(o) (a)
< / o — 2y < / 225 ay,
E/

B//
where B” is a ball of the radius /n with the center origin of the coordinate. Now, it is sufficient to

(o) < < 3 and the assertion the corollary is proved.

note that according to condition (1.2) 5 <. _153
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