

SCIENCEDOMAIN international www.sciencedomain.org

On Removable Sets for Generated Elliptic Equations

T.S. Gadjiev^{*1} and N.Q.Bayramova¹

¹ Institute of Mathematics and Mechanics of NAS of Azerbaijan, B.Vahabzade 9, AZ 1141, Baku, Azerbaijan

Research Article

Received: 31 October 2012 Accepted: 06 February 2013 Published: 29 March 2013

Abstract

In the paper the necessary and sufficient condition of compact removability is obtained

Keywords: elliptic, equation, removability, necessary, sufficient condition, classes of bounded functions 2010 Mathematics Subject Classification: 35J15

1 Introduction

The questions of compact removability for Laplace equation is studied by [1]. The uniform elliptic equation of the second order of divergent structure is studied by [2]. The compact removability for elliptic and parabolic equations of nondivergent structure is considered by [3], [4]. The removability condition of compact in the space of continuous functions are constructed in the papers of [5], [6]. The different questions of qualitative properties of solutions of uniformly degenerated elliptic equations is studied by [7]. Uniform elliptic operator of the second order of divergent structure is considered in the paper [8].

Let E_n be n dimensional Euclidean space of the points $x = (x_1, ..., x_n)$. Denote by R > 0 for $B_R(x_R^0)$ the ball $\{x : |x - x^0| < R\}$, and by $Q_T^R(x_R^0)$ the cylinder $B_R(x^0) \cup (0, T)$. Further let for $x^0 \in E_n, R > 0$ and $k > 0 \varepsilon_{r,k}(x^0)$ be an ellipsoid $\left\{x : \sum_{i=1}^n \frac{(x_i - x_i^0)^2}{R^{\alpha_i}} < (kR)^2\right\}$. Let D be a

bounded domain in E_n with the sufficiently smooth boundary of domain ∂D , $0 \in D$. ε is a such king of ellipsoid that $\overline{D} \subset \varepsilon$, $\mathfrak{B}(\varepsilon)$ is a set of all functions, satisfying in $\overline{\varepsilon}$ the uniform Lipschitz condition and having zero near the $\partial \varepsilon$.

Denote by α and $(\alpha_1, ..., \alpha_n)$ the vector $\langle \alpha \rangle = \alpha_1, ..., \alpha_n$. Condition on α_i is given below.

Denote by $W_{2,\alpha}^{1}(D)$ the Banach space of the functions u(x) given on D with the finite norm

$$\|u\|_{W_{2,\alpha}^{1}(D)} = \left(\int_{D} \left(u^{2} + \sum_{i=1}^{n} \lambda_{i}(x) u_{i}^{2} \right) dx \right)^{1/2},$$

*Corresponding author: E-mail: tgadjiev@mail.az

where

$$u_{i} = \frac{\partial u}{\partial x_{i}}, \ i = 1, .., n. \quad \lambda_{i} \left(x \right) = \left(|x|_{\lambda} \right)^{\alpha_{i}}, \quad |x|_{\alpha} = \sum_{i=1}^{n} |x_{i}|^{\frac{2}{2+\alpha_{i}}},$$
$$0 \le \alpha_{i} < \frac{2}{n-1}$$
(1.1)

Further, let $\overset{\circ}{W_{2,\alpha}^1}(D)$ be a degenerated set of all functions from $C_0^{\infty}(D)$ by the norm of the space $W_{2,\alpha}^1(D)$. Denote by $\mathcal{M}(D)$ the set of all bounded in D functions.

Let $E \subset D$ be some compact. Denote by $A_E(D)$ the totality of all functions $u(x) \in C^{\infty}(\overline{D})$, such that u(x) = 0 at some neighbourhood of the compact E.

The compact *E* is called the removable relative to the first boundary value problem for the elliptic operator *L* in the space $\mathcal{M}(D)$, if all generalized solution of the equation Lu = 0 in $D \setminus E$, $u \mid_{\partial D \setminus E} = 0$, $u(x) \in \mathcal{M}(D)$, then $u(x) \equiv 0$ in *D*. We'll say that the function $u(x) \in \overset{\circ}{W}_{2,\alpha}^{-1}(\varepsilon)$ is non-negative on the set $H \subset \varepsilon$, in the sense of $\overset{\circ}{W}_{2,\alpha}^{-1}(\varepsilon)$, if there exists the sequence of the functions $\{u_{(m)}(x)\}$, m = 1, 2, ..., such that $u_m(x) \in \mathfrak{B}(\varepsilon)$, $u_m(x) \ge 0$ for $x \in H$ and $\lim_{m \to \infty} \left\| u_{(m)} - u \right\|_{W_{2,\alpha}^{1}(\varepsilon)} = 0$.

The function $u(x) \in W_{2,\alpha}^1(D)$ is non-negative on ∂D "in the sense of space" $W_{2,\alpha}^1(D)$, if there exists the sequence of the functions $\{u_m(x)\}, m = 1, 2, ..., \text{ such, that } u_{(m)}(x) \in C^1(D), u_m(x) \geq 0$ for $x \in \partial D$ and $\lim_{m \to \infty} \|u_{(m)} - u\|_{W_{2,\alpha}^1(\varepsilon)} = 0$. It is easy to determine the inequalities $u(x) \geq const, u(x) \geq v(x), u(x) \leq 0$, and also equality u(x) = 1 on the set H in the sense of $W_{2,\alpha}^1(\varepsilon)$, if

at the same time $u(x) \ge 1$ and $u(x) \le 1$ on H, in the sense of $\overset{\circ}{W}_{2,\alpha}^{1}(\varepsilon)$.

I

Let $\omega(x)$ be a measurable function in D, finite and positive for a.e. $x \in D$. Denote by $L_{p,\omega}(D)$ the Banach space of the functions given on D, with the norm

$$|u||_{L_{p,\omega}(D)} = \left(\int_{D} \left(\omega \left(x \right) \right)^{p/2} |u|^p \, dx \right)^{1/p}, \ 1$$

Let $W_{p,\alpha}^{1}(D)$ be a Banach space of the functions given on u(x), with the finite norm D.

$$\|u\|_{W^{1}_{p,\alpha}(D)} = \left(\int_{D} \left(|u|^{p} + \sum_{i=1}^{n} (\lambda_{i}(x))^{p/2} |u_{i}|^{p} \right) dx \right)^{1/p}, \ 1$$

Analogously to $\overset{\circ}{W}_{2,\alpha}^{1}(D)$, it is introduced the subspace $\overset{\circ}{W}_{p,\alpha}^{1}(D)$ for $1 . The space, conjugated to <math>\overset{\circ}{W}_{p,\alpha}^{1}(D)$ we'll denote by $\overset{*}{W}_{p,\alpha}^{1}(D)$.

We'll consider the elliptic operator in the bounded domain $D \subset E_n$

$$L = \sum_{i,j=1}^{n} \frac{\partial}{\partial x_i} \left(a_{ij} \left(x \right) \frac{\partial}{\partial x_j} \right)$$

In assumption, that $||a_{ij}(x)||$ is a real symmetric matrix with measurable in D elements, moreover for all $\xi = (\xi_1, ..., \xi_n) \in E_n$ and $x \in D$ the condition

$$\gamma \sum_{i=1}^{n} \lambda_{i}(x) \xi_{i}^{2} \leq \sum_{i,j=1}^{n} a_{ij}(x) \xi_{i} \xi_{j} \leq \gamma^{-1} \sum_{i=1}^{n} \lambda_{i}(x) \xi_{i}^{2}$$
(1.2)

is fulfilled. Here $\gamma \in (0, 1]$ is a constant.

The function $u(x) \in W_{2,\alpha}^1(D)$ is called the generalized solution of the equation Lu = f(x) in D, if for any function $\eta(x) \in W_{2,\alpha}^{-1}(D)$ the integral identity

$$\int_{D} \sum_{i,j=1}^{n} a_{ij}\left(x\right) u_{x_i} \eta_{x_j} dx = \int_{D} f \eta dx \tag{1.3}$$

is fulfilled.

Here f(x) is a given function from $L_2(D)$.

Let $E \subset D$ be some compact. The function $u(x) \in W_{2,\alpha}^1(D \setminus E)$ is called a generalized solution of the equation Lu = f(x) in $D \setminus E$, u(x) = 0 on ∂D , if integral identity (1.3) is fulfilled for any function $\eta(x) \in A_E(D)$.

We'll assume that the coefficients of the operator L are continued in $E_n \setminus D$ with conditions (1.1), (1.2). For this, it is enough to assume that $a_{ij}(x) = \delta_{ij}\lambda_i(x)$ for $x \in E_n \setminus D$, i, j = 1, ..., n, where δ_{ij} is a Croneker symbol.

Let $h(x) \in W_{2,\alpha}^1(D)$, $f^0(x) \in h_2(D)$, $f^i(x) \in L_{2,\lambda^{-1}}(D)$, i = 1, 2, ..., n, are given functions. Let's consider the first boundary value problem

$$Lu = f^{0}(x) + \sum_{i=1}^{n} \frac{\partial f^{i}(x)}{\partial x_{i}}, \quad x \in D$$
(1.4)

$$(u(x) - h(x)) \in \overset{\circ}{W}_{2,\alpha}^{-1}(D)$$
 (1.5)

The function $u(x) \in W_{2,\alpha}^1(D)$ we'll call a generalized solution of problem (1.4)-(1.5) if for any function $\eta(x) \in \overset{\circ}{W}_{2,\alpha}^1(D)$ the integral identity

$$\int_{D} \sum_{i,j=1}^{n} a_{ij}(x) \, u_{x_i} \eta_{x_j} dx = \int_{D} \left(-f^0 \eta + \sum_{i=1}^{n} f^i \eta_{x_i} \right) dx$$

is fulfilled.

Our aim is to get the necessary and sufficient condition of removability of the compact E.

2 Preliminaries Statements

At first, we introduce some auxiliary statements.

Lemma 2.1. If relative to the coefficients of the operator L, conditions (1.1), (1.2) be fulfilled, then the first boundary value problem (1.4)-(1.5) has a unique generalized solution u(x) at any $h(x) \in W_{2,\alpha}^1(D)$, $f^0(x) \in h_2(D)$, $f^i(x) \in L_{2,\lambda_i^{-1}}(D)$, i = 1, 2, ..., n. At this there exists $P_0(\alpha, n)$ such that, if $p > p_0$, $h(x) \in W_{p,\alpha}^1(D)$, $f^0(x) \in h_p(D)$, $f^i(x) \in L_{2,\lambda_i^{-1}}(D)$, i = 1, 2, ..., n, $\partial D \in C^1$, then solution u(x) is continuous in \overline{D} .

Lemma 2.2. Let relative to the coefficients of the operator *L* conditions (1.1), (1.2) be fulfilled. Then any generalized solution of the equation Lu = 0 in *D* is continuous by Holder at each strictly internal domain ∂ .

Lemma 2.3. Let relative to the coefficients of the operator *L*, conditions (1.1), (1.2) be fulfilled and $\overline{\varepsilon_{R,1}} < D$. Then for any positive solution u(x) of the equation Lu = 0 in *D* the Harnack inequality is true

$$\sup_{\varepsilon_{R,1}(0)} u \le C_1(\gamma, \alpha, n) \inf_{\varepsilon_{R,1}(0)} u$$
(2.1)

If at this $y \in \partial \varepsilon_{R,2}(0)$ and $\overline{\varepsilon_{R,1}}(0) \subset D$, then the inequality of form (2.1) is true in ellipsoid $\varepsilon_{R,1}(y)$.

Lemma 2.4. Let relative to the coefficients of the operator *L* conditions (1.1), (1.2) be fulfilled, and u(x) be generalized solution of the first boundary-value problem (1.4), (1.5) at $f^i(x) \equiv 0, i = 0, ..., n$. Then if h(x) is bounded on ∂D in the sense of $W_{2,\alpha}^1(D)$, then for solution u(x) the following maximum principle is true

$$\inf_{\partial D} h \le \inf_{D} u \le \sup_{\partial D} h,$$

where $\inf_{\partial D} h\left(\sup_{\partial D}h\right)$ is an exact lower (upper) bound of numbers a, for which $h(x) \ge a$ ($h(x) \le a$) on ∂D in the sense of $W_{2,\alpha}^1(D)$.

These lemmas are proved as in paper [7].

Let $H \subset \varepsilon$ be some compact, V_H be a set of all functions $\varphi(x) \in \overset{\circ}{W}^{1}_{2,\alpha}(\varepsilon)$, such that $\varphi(x) \geq 1$ on H, in the sense of $\overset{\circ}{W}^{1}_{2,\alpha}(\varepsilon)$. Let's consider the functional

$$J_{\theta}\left(\varphi\right) = \int_{\varepsilon} \sum_{i,j=1}^{n} a_{ij}\left(x\right) \varphi_{i}\varphi_{j}dx, \ \varphi\left(x\right) \in V_{H}$$

The value $\inf_{\varphi \in V_H} J_{\theta}(u)$ is called L capacity of the compact H relative to ellipsoid ε and denoted by $cap_L^{(\varepsilon)}(H)$. In case $\varepsilon = E_n$, the corresponding value is called L capacity of the compact H and denoted by $cap_L(H)$.

Lemma 2.5. There exists the unique function $u(x) \in \overset{\circ}{W}_{2,\alpha}^{1}(\varepsilon)$ such that $u(x) \geq 1$ on H in the sense of $\overset{\circ}{W}_{2,\alpha}^{1}(\varepsilon)$ and $cap_{L}^{(\varepsilon)}(H) = J_{L}(u)$. Moreover, u(x) = 1 on H in the sense of $\overset{\circ}{W}_{2,\alpha}^{1}(\varepsilon)$.

Proof. It is easy to see that V_H is convex closed set in $\overset{\circ}{W}_{2,\alpha}^1(\varepsilon)$. From the fact that $\overset{\circ}{W}_{2,\alpha}^1(\varepsilon)$ is a Hilbert Space, it follows the existence of unique function $u(x) \in V_H$, on which the functional $J_L(u)$ achieved an exact lower bound. Let $\{u(x)\}^1 = \begin{cases} u(x) & \text{if } u(x) \leq 1 \\ 1 & \text{if } u(x) > 1 \end{cases}$

It is clear, that $\{u(x)\}^1 \in \overset{\circ}{W}_{2,\alpha}^1(\varepsilon)$. Moreover, $\{u(x)\}^1 \in V_H$. Denote by $A^+ = \{x : x \in \varepsilon, u(x) > 1\}$. We have

$$J_{L}\left\{u\left(x\right)^{1}\right\} = \left(\int_{A^{+}} + \int_{\varepsilon \setminus A^{+}} \right) \sum_{i,j=1}^{n} a_{ij}\left(x\right) \left\{u\right\}_{i}^{1} \left\{u\right\}_{j}^{1} dx = \int_{\varepsilon \setminus A^{+}} \sum_{i,j=1}^{n} a_{ij}\left(x\right) u_{i}u_{j} dx$$
(2.2)

On the other side, according to (1.1)

$$\int_{A^{+}} \sum_{i,j=1}^{n} a_{ij}(x) u_i u_j dx \ge 0$$
(2.3)

From (2.2) and (2.3) we conclude

$$J_{L}\left\{u\left(x\right)^{1}\right\} \leq J_{L}\left(u\right) = \inf_{\varphi \in V_{H}} J_{L}\left(\varphi\right)$$

i.e., $J_L \{u(x)^1\} = J_L(u)$. From uniqueness of extreme function it follows, that $\{u(x)\}^1 = u(x)$, and lemma is proved.

The function u(x),on which the functional $J_L(u)$ achieved its exact lower bound is called L capacity potential of the compact H relative to the ellipsoid ε .

Lemma 2.6. Let L be a capacity potential of u(x) of the compact H relative to ε . Then u(x) is a generalized solution of the equation Lu = 0 in $\varepsilon \setminus H$, tending to 0 on $\partial \varepsilon$ and to 1 on ∂H in the sense of $W_{2,\alpha}^1(\varepsilon)$.

Proof. It is sufficient to show the truthness of the first part of assertion of lemma. Let $\eta(x) \in$ $\overset{\circ}{W}_{2,\alpha}^{1}(\varepsilon)$ and $\eta(x) \geq 0$ on H in the sense of $\overset{\circ}{W}_{2,\alpha}^{1}(\varepsilon)$. Then for any $\varepsilon > 0$ $(u(x) + \varepsilon\eta(x)) \in V_{H}$. Therefore

$$J_L\left(u+\varepsilon\eta\right) \ge J_L\left(u\right)$$

Thus

$$J_{L}(u) + \varepsilon^{2} J_{L}(\eta) + 2\varepsilon \int_{\varepsilon} \sum_{i,j=1}^{n} a_{ij}(x) u_{i} \eta_{j} dx \ge J_{L}(u),$$

i.e.

$$J_{L}(u) + 2\varepsilon \int_{\varepsilon} \sum_{i,j=1}^{n} a_{ij}(x) u_{i} \eta_{j} dx \ge 0.$$

Tending ε to zero, we conclude

$$\int_{\varepsilon} \sum_{i,j=1}^{n} a_{ij}(x) u_i \eta_j dx \ge 0.$$
(2.4)

It is easy to see as $\eta(x)$ in (2.4) we can take any function from $C^1(\overline{\varepsilon})$ with compact support in $\varepsilon \setminus H$. Then

$$\int_{\backslash H} \sum_{i,j=1}^{n} a_{ij}(x) u_i \eta_j dx \ge 0$$

Substituting $\eta(x)$ on $-\eta(x)$, we get the equality

$$\int_{\varepsilon \setminus H} \sum_{i,j=1}^{n} a_{ij}(x) u_i \eta_j dx = 0$$

Lemma is proved.

Let μ be a charge of bounded variation, given on ε . We'll say, that the function $u(x) \in L_1(\varepsilon)$ is a weak solution of the equation $Lu = -\mu$, equaling to zero on $\partial \varepsilon$, if for any function $\varphi(x) \in$ $\mathring{W}_{2,\alpha}^{1}(\varepsilon)\cap C\left(\overline{\varepsilon}\right)$ the integral identity

$$\int_{\varepsilon} u L \varphi dx = \int_{\varepsilon} \varphi d\mu.$$

is fulfilled.

According to lemma 2.1 (at h = 0) there exists the continuous linear operator H from $\overset{*}{W}_{2,\alpha}^{1}(\varepsilon)$ in $\overset{\circ}{W}_{2,\alpha}^{1}(\varepsilon)$, such that for any functional $T \in \overset{*}{W}_{2,\alpha}^{1}(\varepsilon)$, the function u = H(T) is an unique generalized solution of the equation Lu = T in $\overset{\circ}{W}_{2,\alpha}^{1}(\varepsilon)$.

The operator H is called Green operator.

By lemma 2.1 this operator at $p > p_0$ we transform $\overset{*}{W}_{2,\alpha}^1(\varepsilon)$ to $C(\overline{\varepsilon})$. It is easy to see, that the function u(x) is weak solution of the equation $Lu = -\mu$, equaling to zero on $\partial \varepsilon$, iff for any function $\psi(x) \in C(\overline{\varepsilon})$ the integral identity

$$\int_{\varepsilon} u\psi dx = \int_{\varepsilon} H(\psi) d\mu.$$
(2.5)

is fulfilled.

By analogy with [8] we can show that for each measure μ on ε there exists the unique weak solution of the equation $Lu = -\mu$ equaling to zero on $\partial \varepsilon$.

Let's say, that the charge $\mu \in \overset{*}{W}_{2,\alpha}^{1}(\varepsilon)$ if there exists the vector $\overline{f}(x) = (f^{\circ}(x), f^{1}(x), ..., f^{n}(x))$ $f^{0}\left(x\right)\in h_{2}\left(\varepsilon\right), f^{i}\left(x\right)\in L_{2,\lambda_{i}}\left(\varepsilon\right), i=1,2,..,n, \text{ for any function } \varphi\left(x\right)\in \overset{\circ}{W_{2,\alpha}}\left(\varepsilon\right)\cap C\left(\overline{\varepsilon}\right) \text{ the integral product of } \left(\overline{\varepsilon}\right)$ identity

$$\mu(\varphi) = \int_{\varepsilon} \varphi d\mu = \int_{\varepsilon} \left(f^{\circ} \varphi - \sum_{i=1}^{n} f^{i} \varphi_{i} \right) dx.$$

is true.

So, it is obvious that

$$\left| \int_{\varepsilon} \varphi d\mu \right| \leq C_2 \left(\overline{f} \right) \|\varphi\|_{W^1_{2,\alpha}(\varepsilon)}$$

Lemma 2.7. The weak solution u(x) of the equation $Lu = -\mu$, equaling to zero on $\partial \varepsilon$, belongs to $\overset{\circ}{W}_{2,\alpha}^{1}\left(\varepsilon\right)\text{, iff }\mu\in\overset{*}{W}_{2,\alpha}^{1}\left(\varepsilon\right)$

Proof. At first, we'll show that if the function $\varphi(x) \in \overset{\circ}{W}_{2,\alpha}^{1}(\varepsilon)$ satisfies the integral identity

$$\int_{\varepsilon} \sum_{i,j=1}^{n} a_{ij}(x) u_i \varphi_j dx = -\int_{\varepsilon} \varphi d\mu$$
(2.6)

for any function $\varphi(x) \in \overset{\circ}{W}_{2,\alpha}^{1}(\varepsilon) \cap C(\overline{\varepsilon})$, then it is weak solution of the equation $Lu = -\mu$, equaling to zero on $\partial \varepsilon$. Really, assuming $\varphi = H(\psi)$, $\psi(x) \in C(\overline{\varepsilon})$ we obtain

$$\int_{\varepsilon} H(\psi) d\mu = \int_{\varepsilon} \varphi d\mu = -\int_{\varepsilon} \sum_{i,j=1}^{n} a_{ij}(x) u_i \varphi_j dx$$
$$= \int_{\varepsilon} u \sum_{i,j=1}^{n} (a_{ij}(x) \varphi_j)_i dx = \int_{\varepsilon} u L \varphi dx = \int_{\varepsilon} u \psi dx,$$

and now it is sufficient to use the identity (2.5). We'll show that $\mu \in \overset{*}{W}_{2,\alpha}^{1}(\varepsilon)$. For this, it is sufficient to prove, that if $f^{i}(x) = \sum_{i=1}^{n} a_{ij}(x) u_{i}(x)$, then $f^{i}(x) \in L_{2,\lambda_{i}^{-1}}(\varepsilon)$, i = 1, 2, ..., n. Assume in condition (2.6) $\xi_1 = \ldots = \xi_{i-1} = \xi_{i+1} = \ldots = \xi_n = 0, \ \xi_i = \frac{1}{\sqrt{\lambda_i(x)}}.$ We'll obtain

$$\gamma \leq \frac{a_{ii}\left(x\right)}{\lambda_{i}\left(x\right)} \leq \gamma^{-1}; \quad i = 1, .., n.$$

$$(2.7)$$

Let $i \neq j$. Assuming $\xi_k = 0$ at $k \neq j$ and $k \neq i$, $\xi_i = \frac{1}{\sqrt{\lambda_i(x)}}$, $\xi_j = \frac{1}{\sqrt{\lambda_j(x)}}$, we'll obtain

$$2\gamma \leq \frac{a_{ii}\left(x\right)}{\lambda_{i}\left(x\right)} + \frac{a_{jj}\left(x\right)}{\lambda_{j}\left(x\right)} + \frac{2a_{ij}\left(x\right)}{\sqrt{\lambda_{i}\left(x\right)\lambda_{j}\left(x\right)}} \leq 2\gamma^{-1}$$

Using (2.7), we conclude

$$\frac{|a_{ij}(x)|}{\sqrt{\lambda_i(x)\lambda_j(x)}} \le \gamma^{-1} - \gamma; \quad i, j = 1, \dots, n; \quad i \neq j$$
(2.8)

From (2.7) and (2.8) it follows that

$$\frac{|a_{ij}(x)|}{\sqrt{\lambda_i(x)\,\lambda_j(x)}} \le \gamma^{-1}; \ i, j = 1, ..., n;$$
(2.9)

Thus, from (2.9) take out for j = 1, ..., n

$$\int_{\varepsilon} \frac{1}{\lambda_j(x)} \left(f^j\right)^2 dx = \int_{\varepsilon} \frac{1}{\lambda_j(x)} \left(\sum_{i=1}^n a_{ij}(x) u_i\right)^2 dx \le \gamma^{-2} n \sum_{i=1}^n \int_{\varepsilon} \lambda_i(x) u_i^2 dx < \alpha$$

So, $\mu \in \overset{*}{W}_{2,\alpha}^{1}(\varepsilon)$. And vice versa, if u(x) is a weak solution of the equation $Lu = -\mu$, and u(x) = 0on $\partial \varepsilon$, then there exists $\mu \in \overset{*}{W_{2,\alpha}}^{1}(\varepsilon)$, such that

$$\left(f^{\circ}\varphi - \sum_{i=1}^{n} f^{i}\varphi_{i}\right)dx = \int_{\varepsilon}\varphi d\mu = \int_{\varepsilon}uL\varphi dx$$
$$= \int_{\varepsilon}u\sum_{i,j=1}^{n}(a_{ij}(x)\varphi_{j})_{i}dx = -\int_{\varepsilon}\sum_{i,j=1}^{n}a_{ij}(x)u_{i}\varphi_{j}dx$$

for any function $\varphi(x) \in \overset{\circ}{W}_{2,\alpha}^{1}(\varepsilon) \cap C(\overline{\varepsilon}), L\varphi(x) \in C(\overline{\varepsilon}).$

Then, from lemma 2.1 we obtain that $u(x) \in \overset{\circ}{W}_{2,\alpha}^{1}(\varepsilon)$. The lemma is proved. Let now $\delta(x)$ be Dirac measure, concentrated at the point 0, y is an arbitrary fixed point ε .

The weak solution q(x, y) of the equation $Ly = -\delta(x - y)$, such that q(x, y) = 0 on $\partial \varepsilon$ is called the Green function of the operator L in ε .

In case $\varepsilon = E_n$ the corresponding function is called the fundamental solution of the operator L and denoted by G(x, y).

According to above proved, if $\psi(x)$ is an arbitrary function from $C(\overline{\varepsilon})$, then the generalized solution $\varphi(x) \in \overset{\circ}{W}_{2,\alpha}^{1}(\varepsilon)$ of the equation $L\varphi = -\psi$ can be introduced in the following from

$$\varphi(y) = \int_{\varepsilon} g(x, y) \psi(x) dx.$$

We can show, that g(x, y) is non-negative in $\varepsilon \times \varepsilon$, moreover, g(x, y) = g(y, x).

Lemma 2.8. For any charge, of bounded variation on ε the integral

$$u(x) = \int_{\varepsilon} g(x, y) d\mu(y)$$

exists, finite a.e. in ε and is weak solution of the equation $Lu = -\mu$, equaling to zero on $\partial \varepsilon$.

Proof. Without losing generality, we'll assume that the charge μ is the measure in ε . Let $\varphi(x) \in$ $C\left(\overline{\varepsilon}\right), \psi\left(x\right) \geq 0$ in ε . Denote by $\varphi\left(x\right) \in \overset{\circ}{W}^{1}_{2,\alpha}\left(\varepsilon\right)$ the generalized solution of the equation $L\varphi = -\psi\left(x\right)$. Then $\varphi\left(x\right) \in C\left(\overline{\varepsilon}\right)$ according to lemma 2.1 and $\psi\left(x\right) \geq 0$ according to lemma 2.4. So

$$\varphi(y) = \int_{\varepsilon} g(x, y) \psi(x) dx.$$

Then, by Fubini theorem we conclude, that the integral $\int_{\varepsilon} g(x, y) d\mu(y)$ there exists for almost all $x \in \varepsilon$, moreover

$$\int_{\varepsilon} H(\psi) \, d\mu(y) = \int_{\varepsilon} \varphi(y) \, d\mu(y) = \iint_{\varepsilon \times \varepsilon} g(x, y) \, \psi(x) \, dx d\mu(y) = \int_{\varepsilon} \psi(x) \, u(x) \, dx.$$
(2.10)

Let's note, that the equality (2.10) is fulfilled for weak non-negative and continuous in $\overline{\varepsilon}$ function $\psi(x)$. Now, it is sufficient to remember the identity (2.5) and lemma is proved.

Let's consider now *L*-capacity of the potential u(x) of the compact *H* relative to the ellipsoid ε . It was proved above that u(x) satisfies the inequality (2.4) at any non-negative on *H* the function $\eta(x) \in C_0^{\infty}(\varepsilon)$. By the Schwartz theorem [9] there exists the measure μ on *H* such that

$$\int_{\varepsilon} \sum_{i,j=1}^{n} a_{ij}(x) u_i \eta_j dx = \int_{\varepsilon} \eta d\mu.$$
(2.11)

Further, since u = 1 on H in the sense of $\overset{\circ}{W}_{2,\alpha}^{1}(\varepsilon)$, then the carrier of the measure μ is located on ∂H . The measure μ is called L -capacity distribution of the compact H.

According to lemma 2.8 *L*-capacity potential u(x) is weak solution of the equation $Lu = -\mu$, equaling to zero on $\partial \varepsilon$ and can be represented in the following form

$$u(x) = \int_{\varepsilon} g(x, z) d\mu(z)$$
(2.12)

On the other side, there exists the sequence of the functions $\{\eta^{(m)}(x)\}$; m = 1, 2, ..., such that $\eta^{(m)}(x) \in \mathfrak{B}(\varepsilon), \eta^{(m)}(x) = 1$ for $x \in H$ and

 $\lim_{m \to \infty} \left\| \eta^{(m)} - u \right\|_{W^{1}_{2,\alpha}(\varepsilon)} = 0. \text{ Assuming in equality (2.5) } \eta^{(m)}(x) \text{ instead of } \eta^{(m)}, \text{ we conclude } \eta^{(m)} = 0.$

that the right-hand side is equal to $\mu(H)$ at any natural m, while the left-hand side tends to $cap_L^{(\varepsilon)}(H)$ as $m \to \infty$. Thus,

$$cap_{L}^{(\varepsilon)}(H) = \mu(H)$$
(2.13)

Lemma 2.9. Let relative to coefficients of the operator *L* conditions (1.1)-(1.2), $y \in \partial \varepsilon_{R,2}(0)$, $\overline{\varepsilon}_{R,1}(0) \subset D$, $x \in \partial \varepsilon_{R,1}(y)$ be fulfilled. Then for the Green function g(x, y) the following estimations are true

$$C_{3}(\gamma,\alpha,n)\left[cap_{L}^{(\varepsilon)}\left(\overline{\varepsilon}_{R,1}(y)\right)\right]^{-1} \leq g(x,y) \leq C_{4}(\gamma,\alpha,n)\left[cap_{L}^{(\varepsilon)}\left(\overline{\varepsilon}_{R,1}(y)\right)\right]^{-1}$$
(2.14)

If $\overline{\varepsilon}_{R,1}(0) \subset D$, $x \in \partial \varepsilon_{R,1}(0)$ then

$$C_3\left[cap_L^{(\varepsilon)}\left(\overline{\varepsilon}_{R,1}\left(0\right)\right)\right]^{-1} \le g\left(x,0\right) \le C_4\left[cap_L^{(\varepsilon)}\left(\overline{\varepsilon}_{R,1}\left(0\right)\right)\right]^{-1}$$
(2.15)

Proof. Without loss of generality, we can assume that the coefficients of the operator *L* are continuously differentiable in \overline{e} . The general case is obtained by means of limit passage. Then at $x \neq y$ the function g(x, y) is continuous by *x* and *y*, moreover

$$\lim_{x \to a} g(x, y) = \infty) \tag{2.16}$$

Let *a* be a positive number, which will be chosen later, $K_a = \{x : g(x, y) \ge a\}$, where *y* is an arbitrary fixed point on $\partial \varepsilon_{R,2}(0)$. From (2.16) it follows that *y* is an internal point of the compact K_a .

Then L is a capacity potential K_a , represented in form (2.12). So it means, it is equal to zero there. Thus,

$$1 = \int_{\varepsilon} y(y, z) \, d\mu_a(z)$$

where μ is a *L*-capacity distribution of the compact K_a . Let the carrier of the measure μ_a is located on ∂K_a , where g(y, z) = a. Then using (18), we obtain

$$\mu_a(K_a) = cap_L^{(\varepsilon)}(K_a) = \frac{1}{a}$$
(2.17)

Let's assume now, $a = \inf_{x \in \partial \varepsilon_{R,1}(y)} g(x, y)$. According to maximum principle $\overline{\varepsilon}_{R,1}(y) \subset K_a$. Therefore from (2.17) we conclude

$$cap_{L}^{(\varepsilon)}\left(\overline{\varepsilon}_{R,1}\left(y\right)\right) \le cap_{L}^{(\varepsilon)}\left(K_{a}\right) = \frac{1}{\inf_{x \in \partial \varepsilon_{R,1}(y)} g\left(x,y\right)}$$
(2.18)

If we assume $b = \sup_{x \in \partial \varepsilon_{R,1}(y)} g(x, y)$, then $\overline{\varepsilon}_{R,1}(y) \subset K_a$, i.e.,

$$cap_{L}^{(\varepsilon)}\left(\overline{\varepsilon}_{R,1}\left(y\right)\right) \leq cap_{L}^{(\varepsilon)}\left(K_{b}\right) = \frac{1}{\sup_{x \in \partial \varepsilon_{R,1}(y)} g\left(x,y\right)}$$
(2.19)

From (2.18) and (2.19) follows that

$$\inf_{x \in \partial \varepsilon_{R,1}(y)} g\left(x, y\right) \le \left[cap_L^{(\varepsilon)}\left(\overline{\varepsilon}_{R,1}\left(y\right)\right) \right]^{-1} \le \sup_{x \in \partial \varepsilon_{R,1}(y)} g\left(x, y\right)$$
(2.20)

On the other side, according to lemma 2.3

$$\sup_{x \in \partial \varepsilon_{R,1}(y)} g(x,y) \le C_5(\gamma,\alpha,n) \inf_{x \in \partial \varepsilon_{R,1}(y)} g(x,y)$$
(2.21)

Now, the required estimations (2.14) follows from (2.20) and (2.21). Absolutely analogously the truthness of inequality (2.15) is proved.

Corollary 2.10. Let the conditions of the lemma, and $y \in \partial \varepsilon_{R,2}(0)$ be fulfilled, $\overline{\varepsilon}_{R,1}(0) \subset D$, $x \in \partial \varepsilon_{R,1}(0)$ or y = 0, $\overline{\varepsilon}_{R,1}(0) \subset D$, $x \in \partial \varepsilon_{R,1}(0)$. Then for the fundamental solution G(x, y) the estimations

$$C_3 \left[cap_L^{(\varepsilon)} \left(\overline{\varepsilon}_{R,1} \left(0 \right) \right) \right]^{-1} \le G \left(x, y \right) \le C_4 \left[cap_L^{(\varepsilon)} \left(\overline{\varepsilon}_{R,1} \left(0 \right) \right) \right]^{-1}$$
(2.22)

are true.

3 REMOVABILITY CRITERION OF THE COMPACT IN THE SPACE M(D)

Theorem 3.1. Let relative to the coefficients of the operator *L*, conditions (1.1)-(1.2) be fulfilled. Then for removability of the compact $E \subset D$ relative to the first boundary value problem for the operator *L* in the space $\mathcal{M}(D)$ it is necessary and sufficient, that

$$cap_L\left(E\right) = 0\tag{3.1}$$

Proof. Let the ellipsoid ε has the same sense, that above. It is easy to see that if condition (3.1) is fulfilled, then

$$cap_L^{(\varepsilon)}(E) = 0$$

Without loss of generality, we can consider the case, when the coefficients of the operator L is continuously differentiable in $\overline{\varepsilon}$. Let's fix an arbitrary $\varepsilon > 0$ and $x^0 \subset D \setminus E$. By virtue of (3.1) there exists the neighbourhood H of the compact E, such that

$$cap_L^{(\varepsilon)}\left(\overline{H}\right) < \varepsilon$$
 (3.2)

So, we can assume that ε is such small, that

$$dist\left(x^{0},\overline{H}\right) \geq \frac{1}{2}dist\left(x^{0},E\right)$$
(3.3)

Denote by $V_H(x)$ and μ_H the *L*-capacity potential of the compact \overline{H} relative to the ellipsoid ε and \overline{L} -capacity of the distribution \overline{H} , respectively. According to above proved

$$V_{H}\left(x
ight)=\int\limits_{arepsilon}g\left(x,y
ight)d\mu_{H}\left(y
ight),$$

moreover the function $V_H(x)$ is a generalized solution of the equation $LV_H = 0$ in $\varepsilon \setminus \overline{H}$, which is equal to 0 on $\partial \varepsilon$ and equal to 1 on ∂H in the sense of $W_{2,\alpha}^1(\varepsilon)$. Let now, $u(x) \in \mathcal{M}(D)$ is an arbitrary solution of the equation Lu = 0 in $D \setminus E$, such that u(x) = 0 on ∂D . Let $M = \sup |u|$. It

is easy to see, that the function $V_H(x)$ is non-negative on ∂D , in the sense of $W_{2,\alpha}^1(D)$. Hence, it follows, that the function $u(x) - MV_H(x)$ is non-positive on $\partial (D \setminus \overline{H})$ generalized solution of the equation Lu = 0 in $D \setminus \overline{H}$. According to lemma 2.4 $u(x) - MV_H(x) \leq 0$ and $D \setminus \overline{H}$ in particular

$$u(x^{0}) \leq MV_{H}(x^{0}) \leq M \sup_{y \in \partial H} g(x^{0}, y) \mu_{H}(\overline{H}) = M \sup_{y \in \partial H} g(x^{0}, y) cap_{L}^{(\varepsilon)}(\overline{H})$$
(3.4)

By virtue of continuity of the function g(x, y) at $x \neq y$ and inequality (3.3) we obtain

$$\sup_{y \in \partial H} g\left(x^{0}, y\right) \leq C_{6}\left(\gamma, \alpha, n, x^{0}, E\right)$$

Thus, from (3.2) and (3.5) we conclude

$$u\left(x^{0}\right) \leq MC_{6}\varepsilon \tag{3.5}$$

Using an arbitrary ε , we get the inequality

$$u\left(x^{0}\right) \leq 0 \tag{3.6}$$

Making similar considerations with the function $u(x) + MV_H(x)$, we obtain

$$u\left(x^{0}\right) \geq 0 \tag{3.7}$$

From (3.5)-(3.6) and an arbitrariness of the point x^0 it follows, that $u(x) \equiv 0$ in $D \setminus E$. Thereby, the sufficiency of condition (3.1) is proved. Let's prove its necessity. Let's assume that $cap_L(E) > 0$. Denote by ε' the ellipsoid, such that $\overline{\varepsilon}' \subset \delta$, $E \subset \varepsilon'$. Assume $D = \varepsilon$. Further, let $u_E(x)$ be V_E -L capacity potential of the compact E relative to the ellipsoid ε' and L-capacity distribution E, respectively. Following to [10], we can give the equivalent definition of Vallee-Poussin type of L-capacity of the compact E, relative to the ellipsoid ε' . Let g(x, y) be a Green function of the operator L in ε' . Let's call the measure μ on E, L-admissible, if $\mu \subset E$ and

$$V_{\mu}^{E}(x) = \int_{\varepsilon'} g(x, y) \, d\mu(y) \le 1 \quad for \ x \in \sup p\mu$$
(3.8)

The value $\sup \mu(E) = cap_L^{(\varepsilon')}(E)$, where an exact upper boundary is taken on all *L*-admissible measures, is called *L*-capacity of the compact *E*, relative to the ellipsoid ε' .

Analogously, the *L*-capacity $cap_L(E)$ is determined. At this by the standard method we show, that there exists the unique measure, on which an exact upper boundary of the functional $\mu(E)$ is reached, by the set of all *L*-admissible measures μ . This measure is *L*-capacity distribution of the compact *E*.

According to the above proved, the function $u_E(x)$ is generalized solution of the equation $Lu_E = 0$ in $\varepsilon' \setminus E$, equaling to zero on $\partial \varepsilon'$. Besides, from (3.7) and maximum principle it follows that $u_E(x) \in M(\varepsilon')$. On the other side $u_E(x) \neq 0$, as $V_H(E) > 0$. Theorem is proved.

Lemma 3.2. Let relative to the coefficients of the operator *L* condition (1.1) be fulfilled. Then, if $y \in \partial \varepsilon_{R,2}(0)$, then $C_7(\gamma, \alpha, n) R^{n + \frac{\langle \alpha \rangle}{2} - 2} \leq cap_L(\overline{\varepsilon}_{R,1}(y)) \leq C_8(\gamma, \alpha, n) R^{n + \frac{\langle \alpha \rangle}{2} - 2}$

Proof. Let
$$L_0 = \sum_{i=1}^{n} \frac{\partial}{\partial x_i} \left(\lambda_i(x) \frac{\partial}{\partial x_i} \right)$$
. Then, according to (1.1)
 $\gamma cap_{L_0}(\overline{\varepsilon}_{R,1}(y)) \le cap_L(\overline{\varepsilon}_{R,1}(y)) \le \gamma^{-1} cap_{L_0}(\overline{\varepsilon}_{R,1}(y))$. (3.9)

Let $u(x) \in C_0^{\infty}\left(\varepsilon_{R,\frac{3}{2}}(y)\right), u(x) = 1$ for $\varepsilon_{R,1}(y)$, moreover

$$|u_i(x)| \le \frac{C_9(\lambda, n)}{R^{1+\frac{\alpha_i}{2}}}; \ i = 1, .., n$$
 (3.10)

Then

$$cap_{L_{0}}\left(\overline{\varepsilon}_{R,1}\left(y\right)\right) \leq \int_{\varepsilon_{R,\frac{3}{2}}(y)} \sum_{i=1}^{n} \lambda_{i}\left(x\right) u_{i}^{2} dx.$$
(3.11)

On the other side, as $y \in \partial \varepsilon_{R,2}(0)$, then $\sum_{i=1}^{n} \frac{y_i^2}{R^{\alpha_i}} = 4R^2$ and thereby

$$|y_i| \le 2R^{1+\frac{\alpha_i}{2}}; \ i=1,...,n.$$

Besides, as $x \in \varepsilon_{R,\frac{3}{2}}(y)$, then

$$|x_i - y_i| \le \frac{3}{2}R^{1 + \frac{\alpha_i}{2}}; \ i = 1, ..., n.$$

Thus

$$|x_i| \le |y_i| + |x_i - y_i| \le \frac{7}{2} R^{1 + \frac{\alpha_i}{2}}; \ i = 1, ..., n.$$

Hence, it follows that

$$\left|x\right|_{\alpha} \leq R \sum_{i=1}^{n} \left(\frac{z}{2}\right)^{\frac{2}{2+\lambda_{i}}}$$

Therefore

$$\lambda_i (x) \le C_{10}^{\alpha_i} R^{\alpha_i} \le C_{10}^{\alpha^+} R^{\alpha_i}; \ i = 1, ..., n.$$
(3.12)

where $\alpha^{+} = \max \{ \alpha_{1}, ..., \alpha_{n} \}.$

Using
$$(3.10)$$
 and (3.12) in (3.11) we obtain

$$cap_{L_0}(\bar{\varepsilon}_{R,1}(y)) \le C_{10}(\alpha, n) R^{-2} mes\left(\varepsilon_{R,\frac{3}{2}}(y)\right) = C_{11}(\alpha, n) R^{n+\frac{(\alpha)}{2}-2}$$

and by virtue of (3.9), the upper estimation of (3.8) is proved.

For truthness of lower estimation of (3.8), we note that

$$cap_{L_0}\left(\overline{\varepsilon}_{R,1}\left(y\right)\right) \ge cap_{L_0}\left(\overline{\varepsilon}_{R,\frac{1}{2\sqrt{n}}}\left(y\right)\right)$$
(3.13)

Besides, considering the same as in [8], we conclude

$$cap_{L_{0}}\left(\overline{\varepsilon}_{R,\frac{1}{2\sqrt{n}}}\left(y\right)\right) \geq C_{12}\left(\alpha,n\right)cap_{L_{0}}^{\left(\varepsilon_{0}\right)}\left(\overline{\varepsilon}_{R,\frac{1}{2\sqrt{n}}}\left(y\right)\right)$$
(3.14)

where $\varepsilon_0 = \varepsilon_{R, \frac{1}{2}}(y)$.

Let
$$W = \left\{ u(x) : u(x) C_0^{\infty}(\varepsilon_0), u(x) = 1 \text{ for } x \in \varepsilon_{R, \frac{1}{2\sqrt{n}}}(y) \right\}$$
. Then
 $cap_{L_0}^{(\varepsilon_0)}\left(\overline{\varepsilon}_{R, \frac{1}{2\sqrt{n}}}(y)\right) = \inf_{u \in W} \int_{\varepsilon_0} \sum_{i=1}^n \lambda_i(x) u_i^2 dx.$
(3.15)

On the other side, if $y \in \partial \varepsilon_{R,2}(0)$, then we can find $i_0, 1 \leq i_0 \leq n$, such that $y_{i_0}^2 \geq \frac{4R^{2+\alpha_{i_0}}}{n}$, i.e.,

$$|y_{i_0}| \ge \frac{4R^{1+\frac{\alpha_{i_0}}{2}}}{\sqrt{n}}$$

Besides, as $x \in \varepsilon_0$, then

$$|x_{i_0} - y_{i_0}| \le \frac{R^{1 + \frac{\alpha_{i_0}}{2}}}{\sqrt{n}}$$

Therefore

$$|x_{i_0}| \ge |y_{i_0}| - |x_{i_0} - y_{i_0}| \ge \frac{R^{1 + \frac{\gamma_{i_0}}{2}}}{\sqrt{n}}$$

Thereby

$$\lambda_i(x) \ge n^{-\frac{1}{2+\alpha_{i_0}}} R; \ i = 1, ..., n.$$
 (3.16)

where $\alpha^- = \min{\{\alpha_1, ..., \alpha_n\}}$.

Using (3.16) in (3.15) we obtain

$$cap_{L_0}^{(\varepsilon_0)}\left(\overline{\varepsilon}_{R,\frac{1}{2\sqrt{n}}}\left(y\right)\right) = C_{13}\left(\alpha,n\right)\inf_{u\in W}\int_{\varepsilon_0}\sum_{i=1}^n R^{\alpha_i}u_i^2dx.$$
(3.17)

Denote by $B_R(z)$ the ball $\{x : |x - z| < R\}$. Let's substitute the variables $v_i = \frac{x_i}{R^{1+\frac{\alpha_i}{2}}}; i = 1, ..., n$ in (3.17) and let \widetilde{y} is an image of the point y, where $\widetilde{W} = \left\{\widetilde{u}(v) : \widetilde{u}(\tau) C_0^{\infty}(B_0), \ \widetilde{u}(\tau) = 1 \text{ for } v \in B_{\frac{1}{2\sqrt{n}}}(\widetilde{y})\right\}$. Then from (3.17) we deduce $B_0 = B_{\frac{1}{2\sqrt{n}}}(\widetilde{y})$ where by (3.17)

$$\begin{aligned} cap_{L_0}^{(\varepsilon_0)}\left(\overline{\varepsilon}_{R,\frac{1}{2\sqrt{n}}}\left(y\right)\right) &\geq C_{13}R^{n+\frac{\langle\alpha\rangle}{2}-2}\inf_{\widetilde{u}\in\widetilde{W}}\int_{B_0}\sum_{i=1}^n \left(\frac{\partial\widetilde{u}}{\partial v_i}\right)^2 d\tau\\ &= C_{13}R^{n+\frac{\langle\alpha\rangle}{2}-2}cap^{(B_0)}\left(\overline{B}_{\frac{1}{2\sqrt{n}}}\left(\widetilde{y}\right)\right),\end{aligned}$$

we'll denote by $cap^{(B_0)}\left(\overline{B}_{\frac{1}{2\sqrt{n}}}(\widetilde{y})\right)$ the Wiener capacity of the compact $\overline{B}_{\frac{1}{2\sqrt{n}}}(\widetilde{y})$, relative to the ball B_0 . Now, it is sufficient to note that $cap^{(B_0)}\left(\overline{B}_{\frac{1}{2\sqrt{n}}}(\widetilde{y})\right) = C_{14}(n)$ and required estimation follow from (3.13), (3.14) and (3.18). Lemma is proved.

Lemma 3.3. Let relative to the coefficients of the operator L condition (1.1) be fulfilled. Then

$$C_{15}(\gamma,\alpha,n) R^{n+\frac{\langle\alpha\rangle}{2}-2} \le cap_L(\overline{\varepsilon}_{R,1}(y)) \le C_{16}(\gamma,\alpha,n) R^{n+\frac{\langle\alpha\rangle}{2}-2}$$
(3.18)

Upper estimation in (3.19) is proved analogously to the estimation in (3.8). For proof of the lower estimation, it is sufficient to note that $\varepsilon_{R,\frac{1}{4}}(\overline{y}) \subset \varepsilon_{R,1}(0)$, i.e. where

$$cap_{L}\left(\overline{\varepsilon}_{R,\frac{1}{4}}\left(\overline{y}\right)\right) < cap_{L}\left(\overline{\varepsilon}_{R,1}\left(0\right)\right)$$
(3.19)

where $\overline{y} = \left(\frac{1}{2}R^{1+\frac{\alpha}{2}}, 0, ..., 0\right)$ and repeat the proof of the previous lemma.

Corollary 3.4. If conditions (1.1)-(1.2) $y \in \partial \varepsilon_{R,2}(0)$ are fulfilled, then for any $\rho \in (0, R]$ the estimation

$$cap_{L}\left(\overline{\varepsilon}_{\rho,1}\left(\overline{y}\right)\right) \leq C_{17}\left(\gamma,\alpha,n\right)\rho^{n+\frac{\langle\alpha\rangle}{2}-2}\left(1+\sum_{i=1}^{n}\left(\frac{R}{\rho}\right)^{\alpha_{i}}\right).$$
(3.20)

is true. Then $v(x) \in C_0^{\infty}\left(\varepsilon_{\rho,\frac{3}{2}}(y)\right), \quad v(x) = 1 \text{ for } x \in \varepsilon_{\rho,1}(y)$

$$|v_{i}(x)| \leq \frac{C_{18}(\alpha, n)}{\rho^{1+\frac{\alpha_{i}}{2}}}; \quad i = 1, ..., n$$

$$cap_{L_{0}}(\bar{\varepsilon}_{\rho,1}(\bar{y})) = \gamma^{-1}C_{18}^{2}\rho^{-2} \int_{\varepsilon_{\rho,\frac{3}{2}}(y)} \sum_{i=1}^{n} \lambda_{i}(x) \rho^{-\alpha_{i}} dx.$$
(3.21)

On the other side, assuming the same, as well as in the proof of lemma 3.2 we obtain the inequality

$$\lambda_{i}(x) < C_{19}(\alpha, n) \left(R + \rho\right)^{\alpha_{i}}, \ x \in \varepsilon_{\rho, \frac{3}{2}}(y); \ i = 1, ..., n.$$
(3.22)

Now, it is sufficient to take into account that

$$\sum_{i=1}^{n} \left(1 + \frac{R}{\rho}\right)^{\alpha_i} \le \sum_{i=1}^{n} \left[1 + \left(\frac{R}{\rho}\right)^{\alpha_i}\right] \le n \left(1 + \sum_{i=1}^{n} \left(\frac{R}{\rho}\right)^{\alpha_i}\right),$$

and from (3.21)-(3.22) the required estimation (3.20) follows.

Corollary 3.5. If conditions (1.1)-(1.2) $y \neq 0$, are fulfilled, then at $x \in \varepsilon_{d|y|_d,1}(y)$, $x \neq y$ for the fundamental solution G(x, y) the estimation

$$G(x,y) \ge C_{20}(\gamma,\alpha,n) \frac{\left(|x-y|_{\alpha}\right)^{2-n-\frac{\langle\alpha\rangle}{2}}}{1+\sum_{i=1}^{n} \left(\frac{|y|_{\alpha}}{|x-y|_{\alpha}}\right)^{\alpha_{i}}}$$
(3.23)

is true.

If y = 0, then estimation (3.23) is true for all $x \neq 0$. Here $d = \frac{1}{n2^{\frac{2}{2+\alpha}}}$. For proof, at first let's show, that if $y \neq 0$, then $y \notin \varepsilon_{d|y|_d,2}(0)$. Really, as

$$|y|_{\alpha} = \sum_{i=1}^{n} |y_i|^{\frac{2}{2+\alpha i}}$$
(3.24)

then there exists $i_0, 1 \leq i_0 \leq n$, such that

$$|y_0|^{\frac{2}{2+\alpha i_0}} \ge \frac{|y|_{\alpha}}{n}.$$

Thus

$$\frac{\left|y_{i_{0}}^{2}\right|}{\left(\left|y\right|_{\alpha}\right)^{\alpha i_{0}}} \geq \frac{\left(\left|y\right|_{\alpha}\right)^{2}}{n^{2+\alpha i}}.$$

There by

$$\sum_{i=1}^{n} \frac{y_i^2}{\left(d \, |y|_{\alpha}\right)^{\alpha_i}} \geq \frac{y_{i_0}^2}{\left(d \, |y|_{\alpha}\right)^{\alpha_{i_0}}} \geq \frac{\left(d \, |y|_{\alpha}\right)^2}{\left(dn\right)^{2+\alpha i_0}} = \frac{4 \left(d \, |y|_{\alpha}\right)^2}{\left(2^{\frac{2}{2+\alpha i_0}} \, dn\right)^{2+\alpha i_0}}$$

Now, it is sufficient to note that $2^{\frac{2}{2+\alpha i_0}} dn \le 2^{\frac{2}{2+\alpha}} dn = 1$ and the required assertion is proved. On the other side from (3.24) it follows that for all $i, 1 \le i \le n$

$$|y_i|^{\frac{2}{2+\alpha_i}} \le |y|_{\alpha} ,$$

i.e.

$$\sum_{i=1}^{n} \frac{y_i^2}{\left(|y|_{\alpha}\right)^{\alpha_i}} \le n \left(|y|_{\alpha}\right)^2.$$

So, we'll show that $\varepsilon_{|y|\alpha,\sqrt{n}}(0)$, if only $y \neq 0$.

Let now, for $y \neq 0, x \in \varepsilon_{d|y|_d,1}(y)$ and $x \neq y$. Denote by $|x - y|_{\alpha}$ the ρ . It is easy to see that there exists $i_1, 1 \leq i_1 \leq n$, such that

$$|x_{i_1} - y_{i_1}|^{\frac{2}{2+\alpha i_1}} \ge \frac{\rho}{n}$$

Hence, it follows that

$$\sum_{i=1}^{n} \frac{\left(x_{i} - y_{i}\right)^{2}}{\rho^{\alpha_{i}}} \geq \frac{\left(x_{i_{1}} - y_{i_{1}}\right)^{2}}{\rho^{\alpha_{1}}} \geq \frac{\rho^{2}}{n^{2 + \alpha i_{1}}} \geq \frac{\rho^{2}}{n^{2 + \alpha}}.$$

Thus $x \notin \varepsilon_{\rho;d_1}(y)$, where $d_1 = \frac{1}{n^{1+\frac{\alpha}{2}}}$. Analogously, it is proved that $x \in \varepsilon_{\rho,\sqrt{n}}(y)$. Now, the required estimation (3.23) at $y \neq 0$ follows from (2.22) and corollary 3.4 from lemma 3.2. If y = 0, then (3.23), it immediately follows from (2.22) and lemma 2.7.

Let F(x, y) be a positive function, determined in $E_n \times E_n$, continuous at $x \neq y$, moreover $\lim_{x \to y} F(x, y) = \infty$ (condition (A)).

Further, let $E \subset E_n$ be some compact. Let's call the measure μ on $E_{-}[F]$ admissible, if $\sup p\mu \subset E$ and $V_{\mu}^{E}(x) = \int_{F} F(x, y) d\mu(y) \leq 1$, for $x \in \sup p\mu$.

The value $\sup \mu(E) = cap_{[F]}(E)$, where an exact upper boundary is taken by all [F] admissible measures, is called [F]-capacity of the compact E.

Theorem 3.6. Let relative to the coefficients of the operator *L* conditions (1.1)-(1.2) be fulfilled. Then for removability of the compact $E \subset D$ relative to the first boundary-value problem for the operator *L* in the space $\mathcal{M}(D)$ it is sufficient that

$$p_{[F_1]}(E) = 0 \tag{3.25}$$

where $F_1(x,y) = \left[1 + \sum_{i=1}^n \left(\frac{|y|\alpha}{|x-y|_{\alpha}}\right)^{\alpha_i}\right]^{-1} \left(|x-y|_{\alpha}\right)^{2-n-\frac{\langle \alpha \rangle}{2}}$.

Proof. We'll use the following assertion, which is proved in [10]. Let function F(x, y) satisfies condition (A), the compact E has zero [F]-capacity, μ zero measure concentrated on E. Then, there exists the point $x^{\circ} \in \sup p\mu$, such that $V_{\mu}^{E}(x^{\circ}) = \infty$. So, the potential of the measure $\sup p\mu$ can't be bounded on any portion B, i.e., for any open set B at $E' \in \sup p\mu \cap B$, the potential $V_{\mu}^{E'}(x)$ is not bound *B*. In particular, if *B* is an arbitrary neighbourhood of the point x° that $V_{\mu}^{E'}(x^{\circ}) = \infty$.

Let the condition (3.25) be fulfilled, μ be an arbitrary measure, concentrated on $E, x^{\circ} \in \sup p\mu$ is a point, corresponding to the above-stated assertion at $F = F_1$. Let's assume at first, that $x^{\circ} \neq 0$. Then $|x^{\circ}|_{\alpha} = v > 0$. Further, let B be such small neighborhood of the point x° , that if $E' \in \sup p\mu \cap B$, then

$$\sup_{y \in E'} |y|_{\alpha} \le (1+\varepsilon) r, \quad \inf_{y \in E'} |y|_{\alpha} \ge (1+\varepsilon) r,$$

where the number $\varepsilon > 0$ will be chosen later. Let's consider the ellipsoids $\varepsilon_{d|y|_d,1}(y)$ at $y \in E'$. Let's choose ε such small, than $x^0 \in \varepsilon_{d|y|_d,1}(y)$ for all $y \in E'$. Then according to corollary 3.5 from lemma 2.7 we obtain

$$V_{\mu}^{E}(x^{0}) = \int_{E} G(x^{0}, y) d\mu(y) \ge \int_{E'} G(x^{0}, y) d\mu(y) \ge \\ \ge C_{20} \int_{E} F_{1}(x^{0}, y) d\mu(y) = C_{20} V_{\mu}^{E}(x^{0}) = \infty.$$

Hence, it follows that any zero measure μ , concentrated on E can't be L admissible. Thus $cap_L(E) =$ 0 and the required assertion follows from theorem 3.1.

Let now $x^{\circ} = 0$. Then, using the equality G(x, y) = G(y, x) and corollary 3.4 from lemma 2.7 we conclude

$$V_{\mu}^{E}(0) = \int_{E} G(0, y) d\mu(y) = \int_{E} G(y, 0) d\mu(y) \ge C_{20} \int_{E} F_{1}(y, 0) d\mu(y)$$
$$= C_{20} \int_{E} F_{1}(0, y) d\mu(y) = C_{20} V_{\mu}^{E}(0) = \infty.$$

Theorem is proved.

Remark. Let condition of the real theorem be fulfilled, and the compact $E \subset D$ be removable relative to the first boundary-value problem for the operator L in the space $\mathcal{M}(D)$. Then mes(E) = 0.

At first, let's note that the discussion of the proof is the same. As in conclusion of estimation (3.23), we can show that at $x \in \varepsilon_{d|y|_d,1}(y)$, $x \neq y \ (y \neq 0)$ and at $x \neq y \ (y = 0)$ the estimations

$$G(x,y) \le C_{21}(\gamma,\alpha,n) \left(|x-y|_d \right)^{2-n-\frac{\sqrt{\alpha}}{2}}$$
(3.26)

is true.

As it was shown in theorem 3.6, if the compact E is a removable, then according to $cap_{[-F_2]}(E) =$ 0, where $F_2(x, y) = (|x - y|_d)^{2 - n - \frac{\langle \alpha \rangle}{2}}$. Hence, it follows that if mes(E) > 0, then there exists the point $x^2 \in E$, such that $V^E(x^1) = \infty$,

where

$$V^{E}(x) = \int_{E} F_{2}(x, y) \, dy$$

Moreover, if B' is an arbitrary neighborhood of the point $E' = B' \cap E$, then the potential $V^{E'}(x)$ is not bounded on E'. Let's consider the case $x' \neq 0$. Choose a small neighbourhood B' of the point x^1 , that at all $x \in E'$, $y \in E'$ the inequality $|x_i - y_i| \le 1$; i = 1, ..., n is fulfilled. For $x \in E'$ we have

$$V^{E'}(x) = \int_{E'} \left(\sum_{i=1}^{n} |x_i - y_i|^{\frac{2}{2+\alpha i}} \right)^{2-n - \frac{\langle \alpha \rangle}{2}} dy \le \int_{E'} \left(\sum_{i=1}^{n} |x_i - y_i| \right)^{2-n - \frac{\langle \alpha \rangle}{2}} dy \le \int_{E'} \left(\sum_{i=1}^{n} |x_i - y_i|^{\frac{2}{2+\alpha i}} \right)^{2-n - \frac{\langle \alpha \rangle}{2}} dy \le \int_{E'} \left(\sum_{i=1}^{n} |x_i - y_i|^{\frac{2}{2+\alpha i}} \right)^{2-n - \frac{\langle \alpha \rangle}{2}} dy \le \int_{E'} \left(\sum_{i=1}^{n} |x_i - y_i|^{\frac{2}{2+\alpha i}} \right)^{2-n - \frac{\langle \alpha \rangle}{2}} dy \le \int_{E'} \left(\sum_{i=1}^{n} |x_i - y_i|^{\frac{2}{2+\alpha i}} \right)^{2-n - \frac{\langle \alpha \rangle}{2}} dy \le \int_{E'} \left(\sum_{i=1}^{n} |x_i - y_i|^{\frac{2}{2+\alpha i}} \right)^{2-n - \frac{\langle \alpha \rangle}{2}} dy \le \int_{E'} \left(\sum_{i=1}^{n} |x_i - y_i|^{\frac{2}{2+\alpha i}} \right)^{2-n - \frac{\langle \alpha \rangle}{2}} dy \le \int_{E'} \left(\sum_{i=1}^{n} |x_i - y_i|^{\frac{2}{2+\alpha i}} \right)^{2-n - \frac{\langle \alpha \rangle}{2}} dy \le \int_{E'} \left(\sum_{i=1}^{n} |x_i - y_i|^{\frac{2}{2+\alpha i}} \right)^{2-n - \frac{\langle \alpha \rangle}{2}} dy \le \int_{E'} \left(\sum_{i=1}^{n} |x_i - y_i|^{\frac{2}{2+\alpha i}} \right)^{2-n - \frac{\langle \alpha \rangle}{2}} dy \le \int_{E'} \left(\sum_{i=1}^{n} |x_i - y_i|^{\frac{2}{2+\alpha i}} \right)^{2-n - \frac{\langle \alpha \rangle}{2}} dy \le \int_{E'} \left(\sum_{i=1}^{n} |x_i - y_i|^{\frac{2}{2+\alpha i}} \right)^{2-n - \frac{\langle \alpha \rangle}{2}} dy \le \int_{E'} \left(\sum_{i=1}^{n} |x_i - y_i|^{\frac{2}{2+\alpha i}} \right)^{2-n - \frac{\langle \alpha \rangle}{2}} dy \le \int_{E'} \left(\sum_{i=1}^{n} |x_i - y_i|^{\frac{2}{2+\alpha i}} \right)^{2-n - \frac{\langle \alpha \rangle}{2}} dy \le \int_{E'} \left(\sum_{i=1}^{n} |x_i - y_i|^{\frac{2}{2+\alpha i}} \right)^{2-n - \frac{\langle \alpha \rangle}{2}} dy \le \int_{E'} \left(\sum_{i=1}^{n} |x_i - y_i|^{\frac{2}{2+\alpha i}} \right)^{2-n - \frac{\langle \alpha \rangle}{2}} dy \le \int_{E'} \left(\sum_{i=1}^{n} |x_i - y_i|^{\frac{2}{2+\alpha i}} \right)^{2-n - \frac{\langle \alpha \rangle}{2}} dy \le \int_{E'} \left(\sum_{i=1}^{n} |x_i - y_i|^{\frac{2}{2+\alpha i}} \right)^{2-n - \frac{\langle \alpha \rangle}{2}} dy \le \int_{E'} \left(\sum_{i=1}^{n} |x_i - y_i|^{\frac{2}{2+\alpha i}} \right)^{2-n - \frac{\langle \alpha \rangle}{2}} dy \le \int_{E'} \left(\sum_{i=1}^{n} |x_i - y_i|^{\frac{2}{2}} \right)^{2-n - \frac{\langle \alpha \rangle}{2}} dy \le \int_{E'} \left(\sum_{i=1}^{n} |x_i - y_i|^{\frac{2}{2}} \right)^{2-n - \frac{\langle \alpha \rangle}{2}} dy \le \int_{E'} \left(\sum_{i=1}^{n} |x_i - y_i|^{\frac{2}{2}} \right)^{2-n - \frac{\langle \alpha \rangle}{2}} dy \le \int_{E'} \left(\sum_{i=1}^{n} |x_i - y_i|^{\frac{2}{2}} \right)^{2-n - \frac{\langle \alpha \rangle}{2}} dy \le \int_{E'} \left(\sum_{i=1}^{n} |x_i - y_i|^{\frac{2}{2}} \right)^{2-n - \frac{\langle \alpha \rangle}{2}} dy$$

$$\leq \int_{E'} |x-y|^{2-n-\frac{\langle \alpha \rangle}{2}} \, dy \leq \int_{B''} |z|^{2-n-\frac{\langle \alpha \rangle}{2}} \, dy,$$

where B'' is a ball of the radius \sqrt{n} with the center origin of the coordinate. Now, it is sufficient to note that according to condition (1.2) $\frac{\langle \alpha \rangle}{2} \leq \frac{n}{n-1} \leq \frac{3}{2}$ and the assertion the corollary is proved.

Competing interests

The authors declare that no competing interests exist.

References

- Carleson L. Removable singularities of continuous harmonic functions in Rⁿ. Math. Scand. 1963, 12: 15–18.
- [2] Moiseev EI. On existence and nonexistence of boundary sets of Neumann problem. Differn. Equat. 1973, 9(5): 901–911.
- [3] Landis EM. To the question on uniqueness of solution of the first boundary-value problem for elliptic and parabolic equations of second order. 1978, UMH, 33(3) 151 p.
- [4] Gadjiev TS, Mamedova VA. On removable sets of solutions of the second order elliptic and parabolic equations in nondivergent form. Ukr. Math. Journ. 2009, 61(11): 1485–1496.
- [5] Harvey R, Polking J. Removable singularities of solutions of linear partial differential equations. Acta Math. 1970, 125: 39-56.
- [6] Kilpelainen T, Zhong X. Removable sets for continuous solutions of quasilinear elliptic equations. Proc. Amer. Math. Soc. 2002, 130(6): 1681–1688.
- [7] Chanillo S, Wreeden R. Harnack's inequality and mean-value inequalities. Comm. Part Diff. Equat. 1986, 11: 1111–1134.
- [8] Littman W, Stampacchia G, Weinberger H. Regular points for elliptic equations with discontinuous coefficients. Ann Scnola Norm. Sup. Pisa 1963, 17: 45–79.
- [9] Schwartz L. Theorie des Distributions. "Hermann", 1950 (v.1), 1951 (v.2), Paris.
- [10] Landkof NS. Foundations of modern potential theory. "Nauka", Moscow, 1966.

©2013 Gadjiev & Bayramova; This is an Open Access article distributed under the terms of the Creative Commons Attribution License http://creativecommons.org/licenses/by/3.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Peer-review history:

The peer review history for this paper can be accessed here (Please copy paste the total link in your browser address bar)

www.sciencedomain.org/review-history.php?iid=206&id=6&aid=1168