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Abstract

In the present paper, we construct the analytical solutions of some nonlinear evolution equations
involving Jumarie’s modified Riemann–Liouville derivative in mathematical physics; namely the
space–time fractional modified Benjamin-Bona-Mahony(mBBM) equation and the space–time
fractional Zakharov-Kuznetsov-Benjamin-Bona-Mahony(ZKBBM) equation by using a simple
method which is called the fractional sub-equation method. As a result, three types of exact
analytical solutions are obtained. This method is more powerful and will be used in further works
to establish more entirely new solutions for other kinds of nonlinear fractional PDEs arising in
mathematical physics.

Keywords: Fractional sub-equation method, fractional differential equation, modified Riemann–
Liouville derivative, mittag-leffler function, analytical solutions.

1 Introduction

Fractional differential equations are generalizations of classical differential equations of integer
order. In recent years, nonlinear fractional differential equations (FDEs) have been attracted great
interest. It is caused by both the development of the theory of fractional calculus itself and by the
applications of such constructions in various sciences such as physics, engineering, and biology
[1–7]. For better understanding the mechanisms of the complicated nonlinear physical phenomena
as well as further applying them in practical life, the solution of fractional differential equation [8–
15] is much involved. In the past, many analytical and numerical methods have been proposed to
obtain solutions of nonlinear FDEs, such as local fractional variational iteration method [16-18],
local fractional Adomian decomposition method [19,20], local fractional Fourier series method
[21,22], finite difference method [23], finite element method [24], differential transform method
[25,26], homotopy perturbation method [27–29] and so on. The fractional differential equations
are widely used to describe various complex phenomena in many fields such as the fluid flow,
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signal processing, control theory, systems identification and other areas. Many articles have
investigated some aspects of fractional differential equations, such as the existence and uniqueness
of solutions to Cauchy type problems, the methods for explicit and numerical solutions, and the
stability of solutions [30,31]. Among the investigations for fractional differential equations,
research for seeking exact solutions and numerical solutions of fractional differential equations is
an important topic, which can also provide valuable reference for other related research.

Recently, Zhang and Zhang [32] introduced a new method called fractional sub-equation method
to look for traveling wave solutions of nonlinear FDEs. The method is based on the homogeneous
balance principle [33] and Jumarie’s modified Riemann-Liouville derivative [34,35]. By using
fractional sub-equation method, Zhang et al. successfully obtained traveling wave solutions of
nonlinear time fractional biological population model and (4 + 1)-dimensional space-time
fractional Fokas equation. More recently, Guo et al. [36] and Lu [37] improved Zhang et al.’s
work [32] and obtained exact solutions of some nonlinear FDEs.

In this paper, we will apply the fractional sub-equation method [32] for solving fractional partial
differential equations in the sense of modified Riemann–Liouville derivative by Jumarie [34] .To
illustrate the validity and advantages of the method, we will apply it to the space-time fractional
mBBM equation and the space-time fractional ZKBBM equation.

The rest of this paper is organized as follows. In Section 2, we will describe the Modified
Riemann-Liouville derivative and give the main steps of the method here. In Section 3, we give
two applications of the proposed method to nonlinear equations. In Section 4, some conclusions
are given.

2 Descriptions of Modified Riemann-Liouville Derivative and the
Proposed Meth

The Jumarie’s modified Riemann–Liouville derivative of order  is defined by the expression
[34]
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Some properties for the proposed modified Riemann–Liouville derivative are listed in [34] as
follows:
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     ( ) ( ) ( ) ( ) ( ( )) ,x g x gD f g x f g x D g x D f g x g x      (4)

The above equations play an important role in fractional calculus in the following sections. We
present the main steps of the fractional sub-equation method as follows.

Step 1: Suppose that a nonlinear FDEs, say in two independent variables and , is given by

( , , , , ,...) 0, 0 1,x t x tP u u u D u D u     (5)

where xD u and tD u are Jumarie’s modified Riemann–Liouville derivatives of ,u
( , )u u x t is an unknown function, P is a polynomial in u and its various partial derivatives,

in which the highest order derivatives and nonlinear terms are involved.

Step 2: By using the traveling wave transformation:

( , ) ( ), ,u x t u kx ct    (6)

where k and c are constants to be determined later, the FDE (5) is reduced to the following
nonlinear fractional ordinary differential equation (ODE) for ( )u u  :

( , , , , ,...) 0.P u ku cu k D u c D u   
    (7)

Step 3: We suppose that Eq. (7) has the following solution:

0
( ) ,

n
i

i
i

u a 


 (8)

where ( 0,1, 2,..., )ia i n are constants to be determined later, n is a positive integer

determined by balancing the highest order derivatives and nonlinear terms in Eq. (5) or Eq. (7)
(see Ref.[38] for details), and ( )   satisfies the following fractional Riccati equation:

2 ,D 
     (9)

where σ is a constant. By using the generalized Exp-function method via Mittag-Leffler functions
[39], Zhang et al. first obtained the following solutions of fractional Riccati equation (9)
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where the generalized hyperbolic and trigonometric functions are defined as
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where ( )E z denotes the Mittag-Leffler function, given as
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Step 4: Substituting Eq. (8) along with Eq. (9) into Eq. (7) and using the properties of Jumarie’s
modified Riemann–Liouville derivative (2) –(4), we can get a polynomial in ( )  . Setting all the

coefficients of ( 0,1,2,...)m m  to zero, yields a set of overdetermined nonlinear algebraic

equations for ( 0,1,2,..., ),ia i n k and .c
Step 5: Assuming that the constants ( 0,1,2,..., ),ia i n k and c can be obtained by solving
the algebraic equations in Step 4, substituting these constants and the solutions of Eq.(9) into
Eq.(8), we can obtain the explicit solutions of Eq.(5) immediately.

Remark: If 1  , the Riccati equation become 2( ) ( )       used in [40]. So the
method in this example can be used to solve integer-order differential equations. In this sense, we
would like to conclude that our method includes the existing tanh-function method as special case.

3 Applications of the Method

In this section, we apply the fractional sub-equation method to construct the exact solutions for
some nonlinear fractional PDEs, namely the space–time fractional mBBM equation and the
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space–time fractional ZKBBM equation which are very important nonlinear fractional PDEs in
mathematical physics and have been paid attention by many researchers.

3.1 Example 1 the Space–Time Fractional mBBM Equation

We first consider the space-time fractional mBBM equation [41] in the form:
2 3 0,t x x xD u D u u D u D u       (11)

where  is a nonzero positive constant. This equation was first derived to describe an
approximation for surface long waves in nonlinear dispersive media. It can also characterize the
hydromagnetic waves in cold plasma, acoustic waves in inharmonic crystals and acoustic gravity
waves in compressible fluids. By considering the traveling wave transformation (6), Eq. (11) can
be reduced to the following nonlinear fractional ODE:

2 3 3 0.c D u k D u k u D u k D u       
       (12)

By balancing the highest order derivative terms and nonlinear terms in Eq. (12), we suppose that
Eq. (12 ) has the following formal solution:

0 1( ) ( ),u a a    (13)

where ( )  satisfies Eq. (9).

Substituting Eq. (13) along with Eq. (9) into Eq. (12) and then setting the coefficients of

( 0,1,2,3,4)i i  to zero, we can obtain a set of algebraic equations for 1, , ,ok c a a as

follows:
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Solving the algebraic equations ( 14 ) by Maple or Mathematica, we have:

0 1 3

60, , .
2
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k

 






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We, therefore, obtain from Eqs. (10), (13) and (15) three types of exact solutions of Eq. (11),
namely, two generalized hyperbolic function solutions, two generalized trigonometric function
solutions and one rational solution as follows:
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As 1  , these obtained exact solutions give the ones of the standard form equation of the
space-time fractional mBBM equation (11).

3.2 Example 2. The Space-Time Fractional ZKBBM Equation

We next consider the following space-time fractional ZKBBM equation [42]
22 ( ) 0.t x x t xD u D u au D u b D D u        (21)

where a and b are arbitrary constants. It arises as a description of gravity water waves in the
long-wave regime. Using the traveling wave transformation(6), Eq.(21) can be reduced to the
following nonlinear fractional ODE:

2 32 0.c D u k D u a k u D u bk c D u        
       (22)

According to the method described in Section 2, we suppose that Eq.(22) has the following formal
solution:

2
0 1 2( ) ( ) ( ),u a a a       (23)

where ( )  satisfies Eq. (9).

Substituting Eq. (23) along with Eq. (9) into Eq. (22) and collect the coefficients of

( 0,1,2,3,4,5)i i  and set them to be zero, a set of algebraic equations are obtained as
follows:
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Solving the set of algebraic equations (24) by Maple or Mathematica yields

0 1 2
1 ( 8 ) 6, 0, .

2
c k bk bc ka a a

a a

     
    (25)

Finally, from Eqs.(10), (23) and (25) we obtain the following generalized hyperbolic function
solutions, generalized trigonometric function solutions and rational solution of Eq. (21)
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where kx ct   .

4 Conclusions

In this paper, we have seen that three types of exact analytical solutions including the generalized
hyperbolic function solutions, generalized trigonometric function solutions and rational solutions
for the  space-time fractional mBBM equation and the space-time fractional ZKBBM equation are
successfully found out by using the fractional sub-equation method.

From our results obtained in this paper, we conclude that the fractional sub-equation method is
powerful, effective and convenient for nonlinear fractional PDEs. Also, the solutions of the
proposed nonlinear fractional PDEs in this paper have many potential applications in physics and
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engineering. Finally, this method provides a powerful mathematical tool to obtain more general
exact analytical solutions of a great many nonlinear fractional PDEs in mathematical physics.

To the best of our knowledge, the solutions obtained in this paper have not been reported in
literature.
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