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ABSTRACT
Level set method has been extensively used for image segmentation, which is a key technology 
of water extraction. However, one of the problems of the level-set method is how to find the 
appropriate initial surface parameters, which will affect the accuracy and speed of level set 
evolution. Recently, the semantic segmentation based on deep learning has opened the 
exciting research possibilities. In addition, the Convolutional Neural Network (CNN) has 
shown a strong feature representation capability. Therefore, in this paper, the CNN method 
is used to obtain the initial SAR image segmentation map to provide deep a priori information 
for the zero-level set curve, which only needs to describe the general outline of the water body, 
rather than the accurate edges. Compared with the traditional circular and rectangular zero- 
level set initialization method, this method can converge to the edge of the water body faster 
and more precisely; it will not fall into the local minimum value and be able to obtain accurate 
segmentation results. The effectiveness of the proposed method is demonstrated by the 
experimental results of flood disaster monitoring in South China in 2020.
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1. Introduction

Flooding is a recurrent and dramatic natural disaster that 
affects several areas in the world, both in tropical and 
temperate regions, which not only causes great damage to 
lives, property, industrial settlements, infrastructures, 
artistic and historical sites, but also dramatically affects 
local ecosystems (Annarita et al. 2016). As one of the 
most effective means for monitoring flood disasters, 
remote sensing can obtain large-scale and high- 
precision surface information. Synthetic-Aperture 
Radar (SAR) sensors are particularly useful for producing 
flood maps, owing to their all-weather and day-night 
operation capability (Biswajeet, Mahyat, and Mustafa 
2016; Li et al. 2018; Donato et al. 2018). In particular, 
the new generation of SAR sensors, such as RadarSat-2, 
TerraSAR-X and China’s Gaofen-3 (GF-3) satellite sen-
sor, provides many daily acquired radar images charac-
terized with high spatial resolution, which is more 
powerful for the flood detection problems.

Image segmentation is very important in flood detec-
tion, in which it is difficult to acquire accurate edges of the 
segmentation region due to speckle noise in SAR images. 
Many algorithms targeting at image segmentation have 
been developed, including the simple ones using thresh-
olding (Lee et al. 2001; Shi et al. 2013; Ma et al. 2018), and 
the sophisticated ones using deep learning. (Long, 
Shelhamer, and Darrell 2015). Recently, a popular 
method for solving image segmentation has been the 

level set method (Ayed et al. 2004; Ayed et al. 2005; 
Huang, Li, and Huang 2005; Lee and Seo 2006; Shuai, 
Hong, and Ge 2008; Silveira and Heleno 2009; Zhang 
et al. 2016; Meng et al. 2018; Chakravarty and Pradhan 
2020). Merits of the method include the robustness to 
locate the boundary of an object and the ability to handle 
topological changes in the curves during their evolution. 
The most common model in the level set method is the 
Chan-Vese model (Chan and Vese 2001), which is based 
on the curve evolution techniques employing the 
Mumford-Shah functional (Mumford and Shah 1989) 
for segmentation and level sets. The Chan-Vese model 
can detect objects whose boundaries are not necessarily 
defined by a gradient and can be adapted more easily to 
topological changes. One of the problems that the level set 
method is facing is the determination of the right initial 
surface parameter, which implicitly affects the curve evo-
lution and ultimately the segmentation result.

With the development of artificial intelligence, seman-
tic segmentation based on deep learning has opened up 
exciting research possibilities (Badrinarayanan, Kendall, 
and Cipolla 2017; Yu and Koltun 2016; Chen et al. 2014, 
2017; Lauko et al. 2020; Yy et al. 2021; Zhong et al. 2021). 
Before deep learning, text, and random forest-based clas-
sification are the most common methods for semantic 
segmentation. After the rise of deep learning methods, 
convolutional neural networks have achieved not only 
great success in image classification tasks, but also have 
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greatly improved semantic image segmentation tasks. 
However, the application of convolutional neural net-
works in semantic segmentation also brings some pro-
blems, of which the main problem is pooling layers. The 
pooling layer increases the field of vision, but also loses 
accurate location information, which contradicts the 
accurate pixel location information required by semantic 
segmentation. There are two types of solutions to this 
problem, one of which is the encoder-decoder network 
structure. The encoder uses a pooling layer to reduce the 
spatial dimension, and the decoder gradually restores the 
details and spatial dimension of the target object. Usually, 
the rapid connection from the encoder to the decoder 
helps the decoder recover object details better. U-net is 
the representative of this kind of method (Zhou et al. 
2020). The other method is to cancel the pooling layer 
and use dilated convolution.

In this paper, a new model called the U-Net 
level set method is introduced. Our main idea is 
to use the trained CNN model prediction results as 
a priori of the level set method. The prediction 
result is to initialize the zero-level set, which only 
needs to describe the general outline of the water 
body, rather than the accurate edges. Compared 
with the traditional circular and rectangular zero 
level set initialization method, the U-Net level set 
method can converge to the edge of the water body 
faster and more precisely. It does not fall into the 
local minimum value, and can obtain accurate seg-
mentation results.

2. Flood detection using the attention U-Net 
and multiscale level set method

The general framework of this paper is as follows 
(Figure 1): (1) The SAR image is decomposed to 
obtain different scale image data. (2) Image 

segmentation based on attention U-Net (Berman, 
Triki, and Blaschko 2018) is performed on the coarsest 
scale. (3) Upsampling the initial segmentation results. 
(4) The initial segmentation results, such as the initial 
zero level set, are optimized by the level set method to 
obtain the accurate segmentation results. (5) 
Removing shadow by integrating the DEM.

2.1. Initial SAR image segmentation using 
attention U-Net

Convolutional Neural Network (CNN) has a strong fea-
ture representation ability. When annotated datasets are 
provided for the CNN model, it can learn the potential 
feature distribution instead of manually setting feature 
rules. Therefore, in this paper, the CNN method is used 
to obtain the initial SAR image segmentation map to 
provide deep a priori information for level set segmenta-
tion. Considering that SAR images do not have rich 
semantic features, an excellent medical image segmenta-
tion network is adopted for our task, namely the atten-
tion U-Net, which combines high-level semantic 
information with low-level features to learn potential 
features and obtain high-quality segmentation results. 
Additionally, attention U-Net combines self-attention 
mechanisms, which makes the network focus on the 
significant information of the SAR image, that is, to 
mine the potential category information of the complex 
image background. First, we introduce the present struc-
ture of a deep convolutional neural network.

2.1.1. Network structure
The SAR image segmentation framework of the 
deep convolutional neural network presented in 
this paper is shown in Figure 2. The whole struc-
ture is divided into a training module and a test 
module. For the training module, the attention 

Figure 1. The overall technology roadmap.

156 C. XU ET AL.



U-Net is used as the initial segmentation method, 
which consists of encoding layers and decoding 
layers. The remaining part of the network shows 
the encoding layers that learn feature representa-
tion. Every Xi,j node in the graph represents 
a convolution operation, and follows a ReLU acti-
vation function, which is composed of convolu-
tional layers with a kernel of 3 × 3, a stride of 1, 
and zero-padding of 1, aiming to keep the input 
and output images of the same size. The downward 
arrows indicate a 2 × 2 max-pooling layer, the 
number of first convolutional channels is 32, and 
the number of convolutional layer channels doubles 
after each down sampling. The right part of the 
network shows the decoding layers that reconstruct 
feature maps. The upward arrows indicate up sam-
pling, which uses the up-sampling layer in each 
step to obtain a high-resolution feature map. The 
“A” node represents attention gates, which receive 
the same-level feature map and the up-sampled 
feature map of the upper layer as inputs to high-
light salient features and disambiguate irrelevant 
and noisy responses. The dot arrows indicate the 
concatenation connections, which merge the atten-
tion feature map and the corresponding upper fea-
ture map. Finally, a sigmoid activation function is 
used as the classifier to obtain segmentation con-
fidence maps. For the detailed network structure 
parameters, please refer to (Oktay et al. 2018). 
During model training, the patch-based segmenta-
tion stage takes the whole images and the ground 
truth image annotation as input. For the test stage, 
image blocks are provided to a well-trained model 
and high confidence probability maps are obtained, 
and the pixel value is set to 1 for values greater 
than 0.5 and 0 for values less than 0.5. Finally, all 

binary segmentation image blocks are spliced 
together to obtain a complete initial segmentation 
image.

2.1.2. Loss function
To achieve a better image SAR segmentation task, the 
Dice similarity coefficient (Dice) is chosen as the loss 
function, which can directly optimize the evaluation 
index and achieve a better segmentation map. Dice is 
usually used to calculate the similarity between pre-
dicted segmentation images and the ground truth. Its 
value range is [0,1], where a higher value of Dice will 
result in a better performance. The mathematical defi-
nition is as follows: 

DCðp; yÞ ¼ 2
jfp ¼ cg \ fy ¼ cgj
jfp ¼ cgj þ jfy ¼ cgj

(1) 

where p is the network predicted value, y is the ground 
truth, c is the class, and DCðp; yÞ is the Dice of the 
ground truth and the predicted images. Therefore, to 
optimize the segmentation results, the loss function is 
minimized, which can be defined as 

min LDice ¼ 1 � DCðp; yÞ (2) 

For our binary classification segmentation task, the 
ground truth segmentation map has only two values 
0,1, so fp ¼ cgj \ jfy ¼ cgj can effectively remove all 
the pixels in the predicted segmentation map that are 
not activated in the ground truth segmentation map. 
For the activated pixels, the low confidence prediction 
is penalized, while a higher value is obtained for the 
better Dice coefficient. Therefore, Dice loss can effec-
tively obtain better segmentation results.

Figure 2. Initial SAR image segmentation framework of a deep convolutional neural network.
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2.1.3. Data preprocessing
To verify the effectiveness of our method, a pair of 
3352 × 3052 SAR images and the corresponding 
ground truth are used as the original dataset in the 
training process. To enrich the experimental dataset, 
the whole slide is divided into 128 × 128 blocks as the 
training set with an overlapping stride of 32, which 
consists of a total of 1120 image block pairs. The 
ground truth is manually marked by geological 
experts, and the black and white parts of the ground 
truth represent river and land, respectively. Among 
them, the different pixel values represent different 
categories, and pixel values of 0 and 1 are specified 
for rivers and land. In the test phase, three images are 
chosen as the test images and uniformly divide the 
image into 128 × 128 images.

2.1.4. Implementation details
In this paper, many image patches are used to train 
our network. During the training stage, all input 
images are normalized by dividing by 255, and the 
batch size is 32. The Adam solver is applied with an 
initial learning rate of 0.001 and momentum para-
meters β1 = 0.500, β2 = 0.999. The learning rate will 
be reduced by 10 times until the training loss does not 
descend for 5 consecutive epochs, and the minimum 
learning rate is 10–8. Our framework is trained for 
approximately 135 epochs. In the test stage, the 
whole image is divided into 128 × 128 image blocks 
to input them into the trained model for testing and 
then obtain the preliminary segmentation image 
blocks, which are spliced according to the order of 
the previous division to obtain a complete initial seg-
mentation image. Our framework is implemented in 
PyTorch (Paszke et al. 2017). All experiments are 
conducted under an Intel Xeon(R) CPU E5-2680 v4 
@ 2.40 GHz, 256 GB of RAM, and an NVIDIA 1080Ti 
GPU with 11 GB of memory.

2.2. Accurate water extraction by multiscale level 
set optimization

2.2.1. SAR image water extraction by an adaptive 
level set method

To remove the influence of speckle and preserve 
important structural information, a multiscale level 
set algorithm is used. Multiscale images are acquired 
at several scales by decomposing the SAR image using 
a four-point average down-sampling scheme (see 
Section 2.2.2). Because the gamma model can well 
represent the distribution of SAR images if the speckle 
is fully developed, spatially uncorrelated and the radar 
reflectivity of the region is constant, it is employed to 
define the energy functional of the level set function of 
the original SAR image. Even if there is a correlation 
between neighboring pixels and the radar reflectivity 

feature texture, the gamma distribution can still be 
used as an approximation by adjusting the number 
of looks L.

Chan and Vese (2001) proposed a model that 
implemented the Mumford-Shah functional via the 
level set function for bimodal segmentation. 
Segmentation is performed using an active contour 
model without boundaries. Let Ω be a bounded open 
subset of R2, with @Ω being its boundary. Let u0ðx; yÞ :
�Ω! R be a given image and C be a curve in image 
domain Ω. Segmentation is achieved via the evolution 
of the curve C, which is the basic idea of the active 
contour model. In the level set method, C � Ω is 
represented by the zero-level set of a Lipschitz func-
tion φ : Ω! R, the unknown variable C is replaced 
with the unknown variable φ.

In this paper, it is assumed that the image is parti-
tioned into two classes Ω1 and Ω2, which are separated 
by a curve C, and that classes Ω1 and Ω2 are modeled 
using the probability density functions (pdfs) p1 and 
p1, respectively.

The partition is obtained by minimizing the follow-
ing energy function: 

F C; p1; p2ð Þ ¼ μLength ðCÞ � λ1 ò
Ω

log p1dxð Þ

� λ2 ò
Ω

log p2dxð Þ (3) 

The base of the log function is 2, which is the same as 
below.

A gamma model is used for high-resolution SAR 
image segmentation. Assuming that uSAR x; yð Þ is 
a SAR image, the image in each region Ri is modeled 
by a gamma distribution of mean intensity ui and 
number of looks L: 

P uSAR x; yð Þð Þ ¼
LL

ui Lð Þ
uSAR x; yð Þ

ui

� �L� 1

e�
LuSAR x;yð Þ

ui (4) 

The Heaviside function H and the one-dimensional 
Dirac function δ0 are used and defined, respec-
tively, by 

HðzÞ ¼ 1 ; ifz � 0
0 ; ifz< 0

�

and δðzÞ ¼
dHðzÞ

dz
(5) 

Segmentation is performed via the evolution of φ by 
minimizing the following energy functional: 

F ;; p1; p2ð Þ ¼ μ ò
Ω

ÑH ;ð Þdx � λ1 ò
Ω

H ϕð Þlogp1dx

� λ2 ò
Ω

1 � H ϕð Þð Þlogp2dx (6) 

where μ, λ1, and λ2 are nonnegative weighted para-
meters. Function ϕðx; yÞ represents class Ω1 for ϕ> 0 
and Ω2 for ϕ< 0.

The evolution of φ is governed by the following 
partial differential motion Equation 
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@φ
@t
¼ δεðφÞ

μdivð Ñφ
Ñφj j
Þ þ νþ λ1 log p1ðyjθ̂

1
Þ

þλ2 log p2ðyjθ̂
2
Þ

" #

(7) 

where δεðϕÞ is a regularized version of the Dirac 
function.

Next, the gamma parameters θ= {μi} is estimated using 
maximum likelihood estimation θ� ¼ arg max

θ
log pðyjθÞ. 

If the samples yj; j ¼ 1; . . . ;N in each region are indepen-
dent and identically distributed, the log likelihood 

is log pðyjθÞ ¼ log
QN

j¼1
pðyjjθÞ ¼

PN

j¼1
log pðyjjθÞ. Taking 

the derivative of log pðyjθÞ with respect to θ and setting 

them equal to zero, μi ¼
PNi

j¼1
yj=Ni is obtained, where Ni is 

the pixel number in Ωi.
For example, the initial segmentation result of the 

attention U-Net is tðxÞ, and then we initialize the level 
set function φ as follows: 

φ ¼ tðxÞ (8) 

The main steps of the level sets method are as follows:

(1) Initialize the level set function using Equation 
(8);

(2) Evolve the level set function φ according to 
Equations (6) and (7);

(3) Determine whether the evolution is stationary. 
If not, return to step (2).

2.2.2. Model description of the multiscale 
framework
Multiscale images are acquired at several scales 
SK(0<K < L) by decomposing the SAR image using 
a four-point average down sampling scheme (referred 
to here as the block averaging algorithm), where S0 , 
and SL correspond to the finest and coarsest image 
scales, respectively. It is assumed that YK and XK 
represent the gray value and classification labels of 
the SAR image at scale SK , respectively. In the present 
method, the candidate labels are first obtained in scale 
SL, and then progressively refined from scales SL� 1 to 

S0. The details of the multiscale model can be seen in 
Figure 3, taking the scale level into two and three 
classes as examples.

The basic idea here is as follows:
(1) On the coarsest scale SL, the result of the atten-

tion U-set segmentation method is applied to classify 
the image roughly, and then the original labels of each 
class can be acquired.

(2) Following that, the level set model in Equations 
(4) and (7) can be used to update the labels with 
a relatively low computational cost, which allows fine- 
scale labels to be acquired.

(3) As the labels of SL has already been obtained, 
then the candidate labels of SL� 1 can be acquired by 
average up sampling. Thus, when a coarse scale is 
given, the distribution of XL� 1 only depends on XL. 
This assumption is reasonable because XL� 1 con-
tains relevant information of the previous coarse 
scale. However, this technology generates error 
labels at scale SL� 1; therefore, the corresponding 
image YL� 1 combined with the candidate labels 
XL� 1 is applied to update the classification labels 
at scale SL� 1.

(4) After obtaining classification labels in scale SL� 1, 
classification labels can be acquired in scale SK 
(0<K < L) in the same way as scale SL� 1, such that 
the classification labels can be interactively obtained 
from the original resolution images, resulting in 
a considerable reduction in the computational cost. 
The accuracy is also improved, as the general classifi-
cation labels can be obtained in the coarser scale 
images while considering the details in fine-scale 
images.

2.2.3. Removing shadow by integrating DEM and 
slope
Based on the water extraction results of the level set, 
the DEM and slope information are used to distin-
guish water bodies and shadows. The method of using 
DEM data and slope information to remove water 
shadow is as follows.

First, we use the Otsu algorithm to segment the 
DEM data, then mark areas with higher elevations, 
and record the coordinates of the marked areas.

Figure 3. Description of the multiscale model.

GEO-SPATIAL INFORMATION SCIENCE 159



Second, slope information derived from DEM are 
calculated and segmented by the Otsu algorithm. 
Since the slope value of mountain shadow is larger 
than that of water body, mark areas with higher 
elevations, and record the coordinates of the marked 
areas.

Finally, the marked elevation data area and the 
marked slope data area are matched with the water 
extraction result; the successfully matched area is the 
shadow area, which can be removed.

3. Case study

Since the flood season in 2020, heavy rainfall has 
occurred in South China, resulting in severe flood 
disasters in many places. Jiangxi Province, Anhui 
Province, and Chongqing city launched flood preven-
tion level-I responses. Multipoint outbreaks, large 
local rainfall, and long durations are the main char-
acteristics of flood disasters in 2020 in China. The 
location of the case study area is shown in Figure 4.

3.1. Case study 1: Poyang Lake, Jiangxi Province

To verify the effectiveness of the flood detection 
method in this paper, a case of Poyang Lake flood 
monitoring in July 2020 was presented. Poyang Lake 
is located in northern Jiangxi Province and is the 
largest freshwater lake in China. It is one of the main 
tributaries of the middle and lower reaches of the 
Yangtze River and an important seasonal lake with 
water-carrying capacity, a throughput lake.

Affected by heavy rainfall and water from the mid-
dle reaches of the Yangtze River, the water level of 
Poyang Lake continues to rise, seeming to exceed the 
historical maximum record. At 2:00 on 6 July 2020, the 
water level of the Poyang Lake estuary hydrological 
station rose to a warning level of 19.50 m, reaching the 
flood number standard. According to the relevant 

regulations, “Poyang Lake flood No. 1 in 2020” was 
formed at 10:00 on July 11, and immediately the flood 
control level-I response has begun.

3.2. Case study 2: Wangjiaba, Anhui Province

To verify the effectiveness of the flood detection 
method in this paper, a case study of Wangjiaba 
flood monitoring in July 2020 is presented. 
Wangjiaba sluice is located in the Mengwa flood sto-
rage area of the Huaihe River, on the left bank of the 
boundary between the middle and upper reaches of 
the Huaihe River. The entrance to the Mengwa flood 
storage project of the Huaihe River in Funan County 
of Anhui Province. As a “barometer“ for flood control 
of the Huaihe River and the “wind vane” of the Huaihe 
River disaster, the Wangjiaba sluice has the title of ”the 
first gate of the Huaihe River”.

At 15:00 on July 18, the water level of Wangjiaba 
station, the mainstream of the Huaihe River, rose to 
28.00 m. The excess over the warning water level was 
0.5 m; moreover, it continued to rise. Meanwhile, 
Anhui Province upgraded the flood control emergency 
response to level I. From the night of July 19 to the 
morning of July 20, more than 2000 people were trans-
ferred overnight to ensure the safety of people’s lives 
and property in the Mengwa flood storage area. At 2:00 
on July 20, the water level of the Wangjiaba Dam rose to 
29.3 m. At approximately 8:30, the water level of the 
Wangjiaba sluice reached 29.75 m, which exceeded the 
warning water level by 0.45 m. According to the order 
of the national flood control and drought relief head-
quarters, the Wangjiaba sluice was opened for flood 
discharge, and the Mengwa flood storage and detention 
area was put into operation, which is the second time in 
13 years. At 13:00 on July 23, the Wangjiaba sluice was 
closed, and flood diversion to the Mengwa flood storage 
area was stopped. To date, the separate storage of floods 
in Mengwa lasted for 76.5 h, with an accumulated flood 

Figure 4. The location of the case study area.
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storage volume of 375 million m3, reducing the flood 
peak water level of the upper and middle reaches of the 
Huaihe River by 0.20–0.40 m, which was conducive to 
flood discharge, reduced the defensive pressure of the 
mainstream dike, and played a significant role in flood 
control.

3.3. Case study 3: Chongqing City

Another case of Chongqing City flood monitoring in 
August 2020 is presented in order to verify the effec-
tiveness of the flood detection method in this paper. 
Chongqing is the provincial administrative region and 
the only municipality directly under the central gov-
ernment in central and western China. Affected by the 
continuous heavy rainfall in the Sichuan Basin, the 
No. 5 flood in 2020 formed by the Yangtze River 
merged with the No. 2 flood in 2020 formed by the 
Jialing River that attacked Chongqing City at 15:00 on 
19 August 2020. Chongqing’s major rivers ushered in 
the largest flood this year, and the whole Chongqing 
section of the Yangtze River and Jialing River was 
greatly overwhelmed. At 14:00 on 18 August 2020, 
Chongqing City upgraded and issued a level-I emer-
gency response for flood prevention and entered the 
emergency flood control period.

4. Experiment results and analysis

To verify the effectiveness of the proposed method, 
a flood disaster in 2020 in China was taken as a case, in 
which three parts are illustrated as follows.

4.1. Experiment on Poyang Lake dataset

To monitor the flood range dynamically, four Sentinel- 
2 satellite images covering Poyang Lake before flooding 
and China’s GF-3 satellite image after flooding were 
used. The resolution of the Sentinel-2 composite image 

is 10 m, and the image size is 20,976 × 20,976 pixels. 
The resolution of the GF-3 image is also 10 m, the 
polarization mode is dual polarization, and an HV 
polarization image is used for our experiment with an 
image size of 28,743 × 26,674 pixels. The original 
Sentinel-2 and China’s GF-3 satellite image data are 
shown in Figures 5 and 6, respectively.

The near-infrared image of sentinel data is used to 
extract the water body. Figure 7(a) shows the water 
extraction result of the Sentinel-2 image, and Figure 7 
(b) and (c) show the water extraction result of the GF- 
3 image by using U-Net and our method, respectively.

As shown in Figure 7, from the perspective of visual 
interpretation, the U-Net method can also get better 
results for this SAR image probably because the 
speckle noise of this SAR image is relatively weak, 
and the water area accounts for many the whole 
image area. On this basis, after the optimization of 
the level set method, the accuracy of water extraction 
is also improved, which can be mainly reflected by the 
extraction of small tributaries.

Based on the water extraction results of Sentinel-2 
optical images in April 2020 and the water body extrac-
tion results of the GF-3 satellite on 13 July 2020, the 
water change monitoring map was obtained, as shown 
in Figure 8. Among them, blue indicates the normal 
water body range, and red indicates the range of chan-
ged water bodies. As shown in Figure 8, the inundated 
area of the water area gradually extended outward and 
upward from the five tributaries of Poyang Lake, the tail 
end of other small and medium-sized rivers. The rele-
vant dikes faced greater pressure, and the surrounding 
farmland and towns faced greater risks.

4.2. Experiment on the Wangjiaba dataset

To monitor the flood range dynamically, China’s GF-3 
satellite images of 13 July 2020, and 21 and COSMO- 
SkyMed satellite images of July 24 were used to detect 

Figure 5. Poyang Lake optical image of Sentinel-2 before flood.
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Wangjiaba, and its nearby waters before and after the 
sluice gate was opened. Figure 9(a–c) show the GF-3 
satellite images of 13 July 2020 and 21, respectively. 
Figure 9(d) shows the COSMO-SkyMed satellite 
image on July 24. The resolution of the GF-3 images 
is 10 m, and the polarization mode has dual polariza-
tion. HV polarization images are used for our experi-
ment, and the sizes of the GF-3 satellite images on 
13 July 2020 and 21 are 40,006 × 36,544 pixels, 
32,592 × 30,001 pixels, and 42,545 × 38,094 pixels, 
respectively. The resolution of the COSMO-SkyMed 
satellite images is 3 m, whose size is 16,827 × 18,030 
pixels.

Figure 10(a–c) show the water extraction results using 
U-Net method on 13 July 2020 and 21, respectively. 
Figure 10(d) shows the water extraction results using 
U-Net method on July 24 by a COSMO-SkyMed image.

Figure 11(a–c) show the water extraction results 
using our method on 13, 20, and 21 July, respectively. 
Figure 11(d) shows the water extraction result using 
our method on July 24 by a COSMO-SkyMed image.

Compared with Figures 10 and 11, the water extrac-
tion accuracy of our method is significantly improved 
compared with U-Net method especially for long and 
thin water body and SAR images with serious speckle 
noise.

The Wangjiaba Mengwa flood storage dynamic 
monitoring result from 13 July to 24 July by using 
our method is as below. Through the superposition 
analysis of vector information and administrative 
planning data, on 13 July, the water area of the 
Mengwa flood storage area was 19.356 km2, account-
ing for 10.19% of the total area, as shown in the blue 
area in Figure 10. On 20 July, from 8:32 to 18:23, the 
water area of the Mengwa flood storage area increased 
to 58.301 km2, accounting for 30.68% of the total area. 
The newly added water body is shown in the orange 
area in Figure 12. As of 17:42 on 21 July, the flooded 
area increased to 112.452 square kilometers, account-
ing for 30.68% of the total area 19% of the total area, 
and the newly added water body is shown in the red 
area in Figure 12. As of 09:54 on 24 July, the inundated 
area increased to 152.584 km2, accounting for 80.31% 
of the total area. The newly added water body is shown 
in the dark red area in Figure 12.

4.3. Experiment on Chongqing City

To monitor the flood range dynamically, Sentinel-2 
satellite image data on 18 May and SAR image data of 
China’2 GF-3 image data on 19 August were obtained. 
The imaging mode of the GF-3 image was the spot-
light, and the resolution of the image was 1 meter. 
Moreover, Chongqing is known as the mountain city 
because the buildings are built on the mountain 
(Figure 13). Overlapping and shadowing are obvious 
in the SAR image; thus, 2-m resolution DEM data 
downloaded from Google were also used in our 
method. In this paper, the flood situation in the central 
urban area of Chongqing was monitored, focusing on 
the water coverage of the Chaotianmen wharf and its 
surrounding areas. The original image data is shown 
in Figure 13.

Figure 6. Poyang Lake SAR image of China’s GF-3 satellite after 
flood.

Figure 7. Water extraction results. (a) the water extraction result of Sentinel-2 image. (b) the water extraction result of the GF-3 
images using U-Net method. (c) the water extraction result of the GF-3 images using our method.
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Figure 8. Flood monitoring map of Poyang Lake.

Figure 9. Experiment datasets of Wangjiaba. (a)-(c) the GF-3 satellite images of 13, 20 and 21 July, respectively. (d) the COSMO- 
SkyMed satellite image on July 24.
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As can be seen from Figure 14(b), the segmentation 
effect of U-Net method is poor for SAR images with 
severe speckle noise and large terrain fluctuation, result-
ing in a lot of mis-classification, such as roads, bare soil, 
and other weak scattering objects. Due to the dynamic 
evolution ability of the level set method, the initial seg-
mentation results only need a rough outline. With the 
DEM and slope information, more accurate water extrac-
tion results can be achieved, as shown in the Figure 14(c).

Based on the water extraction results of the Sentinel 
2 optical image on May 18 and the water body extrac-
tion results of the GF-3 satellite on 19 August, the water 
change monitoring map was obtained, as shown in 
Figure 15. On 18 May 2020, the area of the Yangtze 
River and Jialing River flowing through the central 
urban area of Chongqing was approximately 92 km2, 
accounting for 1.82% of the total area of Chongqing 
central city. On 19 August 2020, the Yangtze River and 
Jialing River became wider, with a total area of 169 km2, 
accounting for 3.35% of the total area of Chongqing 
central city. In the Chaotianmen wharf and its adjacent 
areas, it can be observed that the water level of the 
Yangtze River and Jialing River rose significantly on 

19 August compared with 18 May, and coastal build-
ings such as Chaotianmen wharf and the Caiyuanba 
market were submerged.

5. Conclusions

In this paper, an SAR image flood detection method 
using attention U-Net and a multiscale-level set method 
was proposed, in which the CNN method is used to 
obtain the initial SAR image segmentation map, aiming 
to provide deep a priori information for level set seg-
mentation. Then, the level set method is used to further 
optimize the initial segmentation results and finally 
obtain high-precision water extraction results. Taking 
the 2020 flood disasters of Jiangxi Province, Anhui 
Province, and Chongqing as examples, the time-series 
data of the above areas was analyzed, and a remote 
sensing dynamic monitoring map was formed. The 
proposed method shows its accuracy and generalization.

Even though this method works well to some 
extent, the problem of water extraction in dense build-
ing areas and high mountain areas is still an interna-
tional problem due to the particularity of SAR sensor 

Figure 10. Wangjiaba water extraction results using U-Net method. (a)-(c) the water extraction results on 13, 20 and 21 July, 
respectively. (d) the COSMO-SkyMed water extraction result image on July 24.
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Figure 12. Wangjiaba Mengwa flood storage dynamic monitoring result from July 13 to July 24.

Figure 11. Wangjiaba water extraction results using our method. (a)-(c) the water extraction results on 13, 20 and 21 July, 
respectively. (d) the COSMO-SkyMed water extraction result image on 24 July.
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imaging. In this paper, DEM data is used to 
remove shadows in the Chongqing Experimental 
Area, but only a simple binary segmentation 
method is used for judgment. Next, SAR sensor 
imaging parameters will be combined, and DEM 
data will be used to simulate and invert SAR 
images to obtain more accurate shadow removal 
results.
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Figure 14. Water extraction results of Chongqing city: (a) the water extraction result of Sentinel-2 satellite image data on 18 May, 
(b) the water extraction result of China’2 GF-3 image data on 19 August by using the attention U-Net method, and (c) the water 
extraction result of China’2 GF-3 image data on 19 August by using the proposed method.

Figure 15. Water change monitoring map of Chongqing City.

Figure 13. Experiment datasets of Chongqing City. (a) Sentinel-2 satellite image data on 18 May, (b) China’2 GF-3 image data on 
19 August, and (c) DEM data with a 2-meter resolution.
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