

Prevalence and Atherogenic Index of Plasma as a Predictor of Cardiometabolic Syndrome amongst Road Transport Workers in Owerri

Charles C. Onoh¹, Ify L. Nwaogazie^{1*} and Ernest I. Achalu¹

¹Centre for Occupational Health, Safety and Environment, University of Port Harcourt, Nigeria.

Authors' contributions

This work was carried out in collaboration between all authors. Author CCO designed the study, carried out site visits, computational aspects, wrote the protocol and the first draft of the manuscript. Author ILN served as main supervisor of the study, performed the data analysis, modelling, confirmed the accuracy of the results and documentation. Author EIA provided guidance on literature review and data collection. All authors read and approved the final manuscript.

Article Information

DOI: 10.9734/IJTDH/2017/32392 <u>Editor(s):</u> (1) Giuseppe Murdaca, Clinical Immunology Unit, Department of Internal Medicine, University of Genoa, Italy. (2) Janvier Gasana, Department of Environmental & Occupational Health, Robert Stempel College of Public Health & Social Work, Florida International University, USA. <u>Reviewers:</u> (1) Iloh Gup, Federal University of Technology, Owerri, Nigeria. (2) James Osei-Yeboah, University of Health and Allied Sciences, Ghana. (3) Elizabeth Joseph-Shehu, National Open University of Nigeria, Nigeria. (4) Ayhan Goktepe, Selcuk University, Konya. Complete Peer review History: <u>http://www.sciencedomain.org/review-history/18910</u>

Original Research Article

Received 24th February 2017 Accepted 27th April 2017 Published 4th May 2017

ABSTRACT

Cardiometabolic Syndrome is a constellation of cardiovascular risk factors which include diabetes, hypertension, obesity, dyslipidaemia amongst others. This study was designed to determine the prevalence and predictors of cardiometaboic syndrome among road transport workers. The Study was a work – site based cross sectional study carried out on one hundred and twenty (120) workers at Imo Transport Corporation, Owerri. The Questionnaires were designed to address the background information of the respondents with respect to gender, age, job title, departments and address. The respondents were anthropometrically examined. The prevalence was calculated as a ratio and reported in percentage. Principal Component Analysis (PCA) and Multinomial Probit Regression Model were employed to determine the degree of relationship between the Atherogenic Index of Plasma (AIP) and cardiometabolic parameters and their order of importance. The

prevalence of cardiometabolic syndrome was found to be 19.17%. AIP was shown to be statistically significant and positively correlated with waist circumference (WC) and body mass index (BMI). Atherogenic Index of Plasma (AIP) was shown to be a principal dominant predictor of cardiometabolic syndrome. AIP as a calculated factor can be used in the clinical setting for assessing cardiometabolic syndrome beyond the routinely done lipid profile.

Keywords: Prevalence; atherogenic index of plasma; cardiometabolic syndrome; predictors; principal component analysis.

1. INTRODUCTION

There is a global increase in the prevalence of non-communicable diseases. This growth is felt more in the developing countries of the world [1]. These days in sub-Saharan Africa, noncommunicable diseases are projected to surpass communicable diseases, whereas it used to be the other way [2]. The trend is that there is a rise in both non-communicable and communicable diseases. This presents a double burden in the developing countries, a condition termed epidemiological transition [2,3].

Cardiometabolic Syndrome is a constellation of cardiovascular risk factors like hypertension, central adiposity, dyslipidaemia, type 2 diabetes [4]. Other risk factors include insulin resistance, sedentary lifestyle, consumption of calorie-dense foods and smoking [5]. Information concerning the prevalence and risk factors of cardiometabolic syndrome among sub-Saharan Africa is sparse, as most studies have been conducted in North America, Europe and Asia [6,7]. To the best of our knowledge, no study has systematically evaluated the prevalence of cardiometabolic syndrome in Owerri, Nigeria. The prevalence of cardiometabolic syndrome was determined according to the International Diabetes Federation definition.

Atherogenic Index of Plasma (AIP) is the logarithmically transformed ratio of molar concentration of Triglycerides (TG) to the High Density Lipoprotein cholesterol (HDLc) [8]. AIP is gaining prominence as a screening tool for dyslipidaemia. It has been used for diagnosis and prognosis of cardiovascular diseases. A strong correlation of AIP with lipoprotein particle size and this may explain its high predictive value [9]. It has been shown that AIP is a stronger marker to predict the risk of atherosclerosis and coronary heart disease [10]. It is also recognised as a useful surrogate for insulin resistance [11]. Several reports have shown cardiovascular diseases are independently associated with dyslipidaemia among Nigerians [12]. There is need to investigate the lipid patterns and

Atherogenic Index of Plasma among populations with cardiometabolic syndrome in Nigeria.

2. METHODOLOGY

2.1 Study Area

Owerri is the capital of Imo State of Nigeria. It is situated at latitude 5.4891° N, longitude 7.0176° E. Owerri is mainly inhabited by Igbos, one of the major tribes in Nigeria. There are pockets of other ethnic groups in Owerri. The Otamiri and Nworie Rivers surround Owerri by the east and south respectively [13]. The study area houses the Imo Transport Corporation (ITC) which is the study population with respect to this research. It is located at Plot 16 - 28, MCC-Uratta Road, Owerri. ITC is among the largest and oldest transportation Corporation and maintains a web of network in the country. They maintain excellent services, time conscious and have regards for safety. They operate Shuttle Services within and outside the State and offer Sports events, corporate transportation, Local tours, Staff and school bus shuttle services.

ITC was a government owned Transport Corporation that was recently concessioned to a Private Partner known as Global Ginika Services Limited. It is believed that this Public – Private Partnership will create more jobs for the people of Imo State.

2.2 Study Design

This Study was a work – site based cross sectional study carried out on one hundred and twenty (120) workers at Imo Transport Corporation, Owerri. These workers included drivers, bus conductors, receptionists, security men, cashiers, accountants and traffic orderlies. The Corporation's registers were used to determine the population/sampling frame.

2.2.1 Inclusion criteria

The Criteria included workers of Imo Transport Corporation, Owerri who were 18 years and above. They had given informed written consent for the study.

2.2.2 Exclusion criteria

Excluded from this study were Imo Transport Corporation, Owerri workers who had physical deformities affecting the spine and/or deformities that could not stand for height and weight the anthropometric measurements. Pregnant women were also excluded from the study.

2.3 Sample Size Estimation

The sample size was determined using the prevalence formula:

$$N = \frac{Z^2 P(1-P)}{T^2}$$
(1)

Where N represents the sample size, T = tolerance error (0.05); P = prevalence from a previous study [14]; and; Z= 1.96, is the level of significance (standard normal deviate) which corresponds to 95% confidence level.

Substituting the applicable parameters to Equation (1) yields:

$$N = \frac{1.96^2 X \, 0.075 \, (1 - 0.075)}{0.05^2} = 106.6 \ (\approx 107).$$

The sample size was calculated as 107 with attrition rate of 12% which gave a total of 120 respondents.

2.4 Sample Techniques

Stratified method was used to obtain a representative sample based on the inclusion criteria. Each department in the Corporation was regarded as a stratum. The frame was divided into seperate departments in the organisation which formed the strata. Each stratum was sampled as an independent sub-population, out of which individual respondents were randomly selected [15]. Finally, all the sets of respondents from different departments constitute the required sample.

2.5 Methods of Data Collection

2.5.1 Training of research assistants

Ten Healthcare professionals were engaged, trained and certified competent for the purpose of this study. Each Assistant had a defined and dedicated job description. This involved registration, questionnaire administration, anthropometric measurements, clinical measurements and laboratory estimations, respectively.

2.5.2 Questionnaire

The Questionnaires were designed to address the background information of the respondents with respect to gender, age, job title, departments and addresses.

2.5.3 Physical (anthropometric) measurements

The physical measurements undertaken were height (H), weight (W) and waist circumference (WC). The Body Mass Index (BMI) was calculated as weight per metre square. The weight was measured in kilograms with workers standing bare feet in their minimal clothing using weighing scale by Mettler Toleds Switzerland and measured to the nearest kilograms. The weighing scale was calibrated every morning before use with a 10 kg Standard weight and the checked after zero mark was each measurement. The Height was measured with the respondent being bare-footed and without head-gear or cap stood against the wall with the heels, gluteus and occiput touching the wall where the measuring tape was fixed. A pointer was placed firmly against the scale and the measurement read off on the scale in metres to the nearest centimetres.

The waist circumference was measured using a flexible tape and placing it at midway between the upper border of the iliac crest and the lower border of the coastal margin. The reading was taken when the tape was snug but did not compress the skin at the workers' exhalation [16].

2.5.4 Clinical measurements

The blood pressure was measured using the auscultatory method with Standard mercury in glass Accuson[®] Sphygmomanometer and Stethoscope. This was in accordance with the JNC VII guidelines [17].

2.5.5 Laboratory estimations

The Laboratory estimations carried out were the fasting lipid profile which represents the lipid parameters of Total Cholesterol (TC) and Triglycerides (TG) which were assayed using the enzymatic colourimetric method of Friedewal and

others [18]. The High Density Lipoprotein (HDL) was assayed after precipitation with phosphotungstate and magnesium ions [19]. Glucose was estimated using the Glucose oxidase/Peroxidase method [3,20,21].

2.6 Method of Data Analysis

The data generated were entered into the Microsoft Excel 2016 and transported into XLSTAT 2016, which is an instinctive statistical software that integrates seamlessly into Microsoft Excel. The prevalence was calculated as a ratio and reported in percentage. The Principal Component Analysis was applied in determining the degree of relationship between the AIP and cardiometabolic parameters. The Principal Component Analysis reduced the outcome (dependent variables) on a set of variables (the independent variables) without losing information on the process. The XLSTAT was adopted by subjecting 8 independent variables $x_1 - x_8$ (WC, BMI, AGE, PP, MABP, FBS, DBP, SBP) to PCA to identity, the most weighted parameters otherwise known as principal components or factors which gave the information that described the majority of the data set after data reduction. Verimax rotation was performed on these extracted factors to improve the interpretation of the plot as it increased the absolute values. Furthermore, Logistic Probit Regression Analysis was then employed to develop models with regard to the outcome from the application of PCA (see Equations 3 -5).

2.7 Operational Definition

The authors defined Cardiometabolic Syndrome according to the International Diabetes Federation Criteria: Any person was considered to have cardiometabolic syndrome in the presence of WC $\geq 102 \ cm$ for men and 88 cm for women plus any two or more of the following: Systolic and/or diastolic blood pressure $\geq 130/85$ mmHg and/or hypertension on treatment. Fasting

blood glucose \geq 100 mg/dl and/or diabetes mellitus on treatment, Triglyceride level \geq 150 mg/dl and/or hypertriglyceridaemia on treatment and high density lipoprotein cholesterol (HDLc) < 40 mg/dl for men or > 50 mg/dl for women and/or dyslipidaemia on treatment [4,22].

3. RESULTS AND DISCUSSION

3.1 Results

3.1.1 Demography distribution

One hundred and twenty (120) participants who scaled through the inclusion criteria and who gave their informed written consent were physically examined and subsequently, questionnaires were administered to them primarily to generate background information on gender, age, sex, job description and department (see Table 1). Also, Appendix-A, Table A1 presents the descriptive statistic of the participants' data with respect to Cardiovascular Parameters. The prevalence of cardiometabolic syndrome among ITC workers was determined to be 19.17% (see Equation 2).

The age distribution of the workers ranged from 25.0 to 64.0 years. Seventy-eight (78) respondents were males while forty-two (42) were females. The modal age group for this study was the age category of 35.0 – 44.0 years. This represents 32 and 21 male and female participants, respectively (see Table 1). The distribution of the measured variables ranged from 65-125 cm, 13.13-53.33, 10-401 mg/dl, 193-90 mmHg, 10-110 mmHg and -0.519-0.641 with respect to WC, BMI, FBS, SBP, DBP, and AIP, respectively (see Appendix –A, Table A1).

$$Pr evalence Rate = \frac{No. of Re spondents with Cardiometabolic Risk}{Total No. of Re spondents} \times 100$$
$$= \frac{23}{120} \times 100 = 19.17$$
(2)

Age	Ma	Male		emale	Total No. of	Proportion of
Group (years)	No. of respondents	Proportion of respondents (%)	No. of respondents	Proportion of respondents (%)	respondents in age group	respondents in age group (%)
25 – 34	8	6.7	8	6.7	16	13.4
35 – 44	32	26.7	21	17.5	53	44.2
45 – 54	28	23.3	13	10.8	41	34.1
55 – 64	10	8.3	0	0.0	10	8.3
Total	78	65	42	35	120	100.0

Table 1. Demographic information of ITC workers

3.1.2 Principal component analysis (PCA)

The review of the data on Appendix A with respect to AIP confirmed 23 respondents were at risk of cardiometabolic syndrome while 97 were not. The principle component analysis was therefore carried out for the 23 respondents at risk (data set-1) and the entire 120 respondents both at risk and non-risk (data set-2). To validate the application of PCA, the Kaiser-Meyer-Olkin (KMO) analysis was carried out on both sets of data (see Appendix-A, Table A2). Similarly, the normality test (Kolmogorov-Smirnov test) was carried out on both data sets for the purpose of selection of parametric or non-parametric regression option; the results are as presented in Appendix-A (Table A3). The application of PCA on the collected data sets-1 and 2 vielded the results / outputs (see Table 2 and scree plot, Fig. 1). Also, the biplot of the correlation of 23 respondents (data set-1) on the variables $(x_1 - x_2)$ x_8) is as shown in Fig. 2. Table 3 presents the squared cosines of the variables after varimax rotation.

The output from the analyses of data sets-1 & 2 using PCA, generated six factors (F1 – F6). Factors -1 & 2 where extracted with respect to the eigenvalues and cumulative percentage variability of the cardiovascular parameters (see Table 2). Factors 1 and 2 cumulatively reflected 72.4% for data set-1 and 55.9% for data set-2 of the cardiovascular parameters (see Fig. 1 for data set-1). The 72.4% of extracted factors-1 & 2 for data set-1 is reasonably above average and thus, adequate for prediction of cardiovascular parameter (AIP). However, the 55.9% cumulative percentage variability for data set-2 is not adequate for sake of developing predictive model.

The results of varimax rotation on the extracted factors, D1 and D2 indicated 5 & 3 variables for D1 and D2 for 23 respondents at risk; and 3 & 5 variables for D1 and D2 for 120 respondents at risk and non-risk (see Table 3), respectively.

Given Table 3, for data set-1, variable x_6 (pp), and x_5 (SBP) have relatively high contribution with respect to D1, while variable x_7 (DBP) has the highest contribution with respect to D2, followed by x_3 (FBS) and finally x_1 (WC) as the least. The biplot (see Fig. 2) is a plot of the correlation of respondents on the cardiovascular variables. It can be seen from the biplot that most of the variables correlate positively with each other when reflected on the respondents.

3.1.3 Model development for atherogenic index of plasma (AIP)

Based on the results of the normality test in Appendix-A (Table A3) between data sets-1 & 2, it is apparent that for data set 1, the majority of the results indicated normal distribution. Thus, the parametric statistical approach was adopted for regression modelling. The regression modelling for AIP was carried out for both data sets-1 and 2 in order to compare their respective goodness of fits and appropriateness or otherwise of using data set-2 in preference to data set-1.

From the output of PCA, three logistic probit models were developed each for data sets-1 & 2 assuming the collected data type as ordinal at 95% confidence interval. AIP was assumed as the dependent variable (y) while WC, BMI, FBS, Age, PP, MABP, DBP, and SBP were assumed as independent variables representing x_1 , x_2 , x_3 , x_4 , x_5 , x_6 , x_7 , and x_8 , respectively (see Appendix-A, Table A1). The first model employed all the eight independent variables; second model five independent variables and third model three independent variables. All the variables in models-1 & 2 correspond to the extracted factor-1 (F1) after varimax rotation (see Table 3). The third model was developed using variables corresponding to extracted factor-2 (F2). Table 4 presents the summary of the regression analyses for data sets-1 & 2 with the respective resultant goodness of fits for each developed model (see Appendix B). Variable x_7 and x_8 were omitted in

 Table 2. Summary result of principal component analysis

		23 Resp	ondents @ Ris	sk					
	F1	F2	F3	F4	F5	F6			
Eigenvalue	3.7009	2.0938	1.0573	0.5484	0.4379	0.1618			
Variability (%)	46.2607	26.1721	13.2160	6.8552	5.4740	2.0220			
Cumulative %	46.2607	72.4328	85.6487	92.5039	97.9780	100.0000			
		120 Responde	ents @ Risk/N	on-risk					
	F1 F2 F3 F4 F5 F6								
Eigenvalue	2.1378	1.2182	1.0513	0.7371	0.6771	0.1785			
Variability (%)	35.6294	20.3040	17.5214	12.2854	11.2856	2.9742			
Cumulative %	35.6294	55.9334	73.4549	85.7403	97.0258	100.0000			

the model development for Model-1 due to multicolinearity between them (see Equation 3). The frequency distribution of Atherogenic Index

of Plasma and the risk stratification among workers in ITC, are shown in Table 5.

Fig. 1. Scree plot for factor extraction with respect to the 23 respondents @ risk

Fig. 2. Biplot of the correlation of 23 respondents on the variables

Parameters	23 Respon	dents @ Risk	120 Respondents @ Risk & Non-ris		
	[±] D1	[±] D2	[±] D1	[±] D2	
x1 = WC	*0.5867	0.0075	0.0819	*0.3821	
$x2 = BMI (kg/m^2)$	*0.6445	0.0700	0.0383	*0.3765	
x3 = FBS	0.1516	*0.4177	*0.0859	0.0064	
x4 = Age (yrs)	0.0187	*0.3611	0.0027	*0.2055	
x5 = pp	*0.8890	0.0110	0.0029	*0.7316	
x6 = MABP	*0.5118	0.3799	*0.9014	0.0579	
x7 = DBP(mm/Hg)	0.0000	*0.8358	*0.9014	0.0351	
x8 = SBP(mm/Hg)	*0.8697	0.0396	0.3248	*0.4915	

Table 3. Squared cosines of the variables after Varimax rotation

^{*}D1 & D2 = Factor 1 & 2 After varimax rotation; * parameters selected by PCA

Table 4. Summary of regression analyses

Model	Goodness	of Fit, R ² (%)	Modelled independent	Model parameter
	120 respondents @ risk & non- risk	23 respondents @ risk	variable	interpretation
Model 1	68.83	73.11	$x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8$	WC, BMI, FBS, Age, PP, MABP, DBP, SBP.
Model 2	65.35	-	X3, X6, X7	FBS, MABP, DBP .
	-	69.97	$X_1, X_2, X_5, X_{6}, X_8$	WC, BMI, PP, MABP, SBP.
Model 3	68.53	-	$x_1, x_2, x_4, x_{5,} x_8$	WC, BMI, Age, PP, SBP.
	-	66.29	x ₃ , x ₄ , x ₇	FBS, Age, DBP.

Equations (3-5) are the developed models with respect to data set-1:

Model 1:

$$y = -0.0554x_1 + 0.214x_2 - 0.290x_3 - 0.387x_4 - 0.630x_5 + 0.485x_6 + 2.951$$
(3)

Model 2:

$$y = -0.667x_1 + 0.249x_2 - 0.667x_5 + 0.487x_6 + 2.481$$
(4)

Model 3:

$$y = 0.483x_3 - 0.521x_4 + 0.233x_7 + 1.851$$
(5)

Table 5. Frequency distribution of Atherogenic Index of Plasma (AIP)

AIP Range	Frequency of	distribution	Percentage (%)		
	120 respondents	23 respondents	120 respondents	23 respondents	
	@ Risk & Non-risk	@ Risk	@ Risk & Non-risk	@ Risk	
AIP < 0.11	7	2	6	9	
AIP = 0.11 - 0.24	30	1	25	4	
AIP > 0.24	83	20	69	87	
Total	120	23	100	100	

3.2 Regression of Principal Components

Kishore and others [23] used multivariate logistic regression analysis to demonstrate a strong association between age and hypertension. The models developed using logistic probit regression analysis yielded goodness fit of 64 - 65%. In this study, the three models developed each for data sets-1 & 2, the distributions of the goodness of fit were as follows: 73.1% for 8 variables, 69.97% for 5 variables and 66.29% for 3 variables for models 1-3 for data set-1. Also, we have 68.8% for 8 variables, 65.35% for 3 variables and 68.5 for 5 variables for models 1-3 for data set-2, respectively. The superiority of models-1 & 2 from data set-1 (23 respondents at risk) over the same models for data set-2 was established based on the corresponding goodness of fit. In other words models developed on applicable data set are to be preferred from a more general data. However, the goodness of fit of model-3 for data sets 1 & 2 were 66.29 for 3 variables and 68.53% for 5 variables, respectively. By reason of data economy, model-3 of data set-1 may be preferred to the same model of data set-2. In model development we seem to prefer models with few independent variables for sake of data availability to those with more independent variables.

From analysis of the results, it showed that WC, BMI, PP, MABP, and SBP have very high contribution or influence on AIP Thus, one could confidently make predictions of AIP using the five cardiometabolic parameters (WC, BMI, PP, MABP, and SBP). This is at variance with the study reported by Niroumand and others [24], in which they found a significant association between AIP and FBS. In another study, it was shown that hyperglycaemia and hypertension contributory to the development are of atherosclerosis [25]. From Table 5 the AIP risk stratification has been presented as AIP less than 0.11 to be of low risk, AIP greater than 0.11 to 0.24 to be of moderate risk and AIP greater than 0.24 to be of a high risk. Among the ITC workers 87% of them have a high risk of developing cardiometabolic syndrome. They carried a high value of AIP. Only 4% of the workers have a moderate risk of developing cardiometbolic syndrome. This was with respect to data set-1 (23 respondents at risk).

This Study has demonstrated that Atherogenic Index of Plasma (AIP) correlates statistically and significantly with WC and BMI (Equation 4). According to Grundy and others [26], Bhardwaj and others [7] both WC and BMI are important components and determinants of cardiometabolic syndrome. Similarly, this study has shown that AIP is a strong predictor of cardiometabolic syndrome. This is in agreement with the study of Rexrode and others [27] and Arden and others [28] who reported the usefulness of WC as an indicator of truncal obesity which is associated with abnormal adiposity. This also, is a strong risk factor for cardiovascular morbidity and diabetes.

Furthermore, in a study carried out in a Qatar population, it was found that WC happened to be the best predictor of cardiometabolic syndrome. In another cross-sectional study which took place among Whites and African-Americans in the United States of America, WC was reported to be the most powerful anthropometric tool in predicting cardiometabolic syndrome [29]. This Study has also demonstrated that the prevalence of cardiometabolic syndrome in Owerri was 19.1%. Adediran and others [30] reported that the cardiometabolic syndrome was 12.1% in Lagos. In Ethiopia in a study carried out among working adults the prevalence of cardiometabolic syndrome was 17.9% [31].

3.3 Study Implications

Cardiometabolic Syndrome is a constellation of cardiovascular risk factors and it is no longer rare in sub-Sahara Africa. The prevalence is increasing and the trend is that it increases with age. Nigeria is not an exception, the prevalence as reported in Jos was as high as 63.6% [32]. This could be attributed to the adoption of western life style and departure from traditional African lifestyles.

In situations where other lipid parameters like TG and HDLc appear normal, the use of AIP may be of diagnostic value [33]. Many clinicians are now using AIP as significant predictor of atherosclerosis [34]. There is also the advantage of using AIP when other sub-fractions appear normal or elevated. The risk stratification of AIP into low, moderate and high risk helps in determining the appropriate intervention to be applied which could be physical activity, nutritional, pharmacological or surgical.

4. CONCLUSION

This study has established that the:

i) Prevalence of cardiometabolic syndrome in Owerri is 19.17%. AIP has shown to be positively correlated with WC, BMI, PP, MABP and SBP with goodness of fit of 69.97%; and

A set of predictive regression models for AIP have been developed for 3, 5 and 8 cardiometabolic parameters as independent variables.

5. RECOMMENDATIONS

The following recommendations were made as a result of this study:

- There is need to introduce preventive strategies and interventional programmes in the workplace.
- ii) This can be accomplished through the establishment of occupational health programmes that increase physical activities.
- iii) Efforts should be made to reduce intake of calorie-dense foods. Whole grain cereals, fruits, vegetables and white meat should be taken. One must avoid the intake of sugar containing beverages and other simple sugars.

CONSENT AND ETHICAL CLEARANCE

Ethical approval was obtained from the Chairman of Research & Ethics Committee, Department of Health Services, Federal University of Technology, Owerri. All respondents gave their informed written consent for the study. All the information shared during the research were kept secret and protected by the law of confidentiality.

COMPETING INTERESTS

Authors have declared that no competing interests exist.

REFERENCES

- Murray CJI, Lopez AD. Alternative projections of mortality and disability by burden 1990 – 2020. Global burden of disease study. Lancet. 1997;349(9064): 1498–1504.
- Mathers CD, Loncar D. Projections of global mortality and burden of diseases from 2002 to 2030. Plas Medicine. 2006;3(11):442.
- Onoh CC, Nwaogazie IL. Assessment of diabetes: Prevalence and predictions of risk development in a manufacturing

industry in Owerri, Nigeria. International Journal of Current Advanced Research. 2015;4(8):341–348.

- IDF. The International Diabetes Federation Consensus Worldwide definition of the metabolic syndrome; 2006. Available:<u>http://www.idf.org/webdata/docs/l</u> <u>DF-Meta-def_final.pdf</u> (Accessed 13/10/2016)
- Adegoke OA, Adedoyin RA, Balogun MO, Adebayo RA, Bisiriyu LA, Salawu AA. Prevalence of metabolic syndrome in a rural community in Nigeria. Metabolic Syndrome and Related Disorders. 2010;8(1):59-62.
- Feng Y, Hong X, Li Z. Prevalence of metablic syndrome and its relation to body composition in a Chinese rural population obesity. 2006;14(11):2089–2098.
- Motala AA, Mbanya JC, Ramaiya K. Metabolic syndrome in sub-saharan Africa. Ethnicity & Disease. 2009;19(2):52-58.
- Bhardwaj S, Bhattacharjee J, Bhatnagar MK, Tyag S. Atherogenic index of plasma, castelli risk index and atherogenic coefficient – new parameters in assessing cardiovascular risk. International Journal of Pharmacy and Biological Sciences. 2013;3(3):359-364.

Available: http://www.ijpsonline.com

- 9. Dobiasova M. AIP-atherogenic index of plasma as a significant predictor of cardiovascular risk: From research to practice. Vnitr Lek. 2006;52(1):64-71.
- Dobiasova M, Frohlich J. The plasma parameter log (TG/HDL) as an atherogenic index: Correlation with lipoprotein particle size and esterification rate in apo Blipoprotein depleted plasma (FER(HDL)). Clin Biochem. 2001;34(7):583-8.
- McLaughlin T, Abbasi F, Cheal K, Chu J, Lamendola C, Reaven G. Use of metabolic markers to identify overweight individuals who are insulin resistant. Annals of Internal Medicine. 2003;10:802-809.
- Adediji OO, Onitiri AC. Plasma lipids in Nigeria hypertensives. African Journal of Medicine and Medical Sciences. 1990;19(4):281-284.
- Onoh CC, Nwaogazie IL. Workplace assessment of hypertension: Prevention and awareness in a food processing industry in Owerri, Nigeria. International Journal of Tropical Disease & Health. 2016;16(4):1–11. Available:<u>http://www.sciencedomain.org</u>

- Owiredu W, Nkrumah C, Bedu-Addo G, Quaye L, Alidu H. Co-existence of syndrome X and hypertension among Ghanaians. Journal of Medical & Biomedical Sciences. 2010;5(1):8-16.
- 15. Nwaogazie IL. Probability and statistics for science and engineering practice. De-Adroit Innovation, Enugu; 2011.
- Iloh GUP, Ikwudinma AO, Obiegbu NP. Obesity and its cardiometabolic commodities among adult Nigerians in primary care clinic of a tertiary hospital in South-eastern, Nigeria. J. Family Medicine and Primary Care. 2013;2(1):20–26.
- 17. Chobanian AV, Bakris GL, Black HR. The seventh report of the Joint National Committee on prevention, detection, evaluation and treatment of high blood pressure. The JNC VIII report JAMA. 2003;289:2560-2572.
- Freidewal WT, Levy RI, Fredrickon DS. Estimation of the concentration of low – density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge Clin Chem. 1972;18:499– 502.
- 19. Lopez-Virella MF, Stone P, Ellis S, Colwell JA. Cholesterol determination in high density lipoprotein separated by three different methods. Clin Chem. 1997;23: 882–884.
- 20. Trinder P. Determination of blood glucose using an oxidase-perioxidase system with a non-carcinogenic chromogen. J. Clin Pathol. 1969;22(2):158–61.
- 21. Onoh CC. Workplace health assessment of hypertension and diabetes in some selected manufacturing industries in Owerri, South Eastern Nigeria. M.Sc. Thesis. University of Port Harcourt, Rivers State, Nigeria. 2014;92–112.
- Akintunde N, Ayodele OE, Akinwusi PO, Opadijo GO. Metabolic syndrome: Comparison of occurrence using three definitions in hypertensive patients. Clin Med Res. 2011;9:26–31.
- Kishore J, Gupta N, Kohli C, Kuma N. Prevalence of hypertension and determination of its risk factors in rural Delhi. International Journal of Hypertension; 2016. Available:<u>http://www.dx.doc.org/10/1155/2</u> 016/7962595
- 24. Niroumand S, Khajedaluee M, Khadem-Rezaiyan M, Abrishami M, Juya M, Khodaee G, Dadgamoghaddam M.

Atherogenic index of plasma (AIP): A marker of cardiovascular disease. Med J. Islam Rep Iran. 2015;29:240-249.

- 25. Tariq M, Rajab A. Comparative study for Atherogenic index of plasma (AIP) in patient with type 1 diabetes mellitus, type 2 diabetes mellitus, betathalassaemia and hypothyroidism. Int. J. Chem. Res. 2012;2: 1-9.
- 26. Grundy SM, Cleeman JI, Daniels R. Diagnosis and management of the metabolic syndrome: An American Heart Association/National Heart, Lung, and Blood Institute Scientific Statement. Circulation. 2005;112(17):2735–2752.
- 27. Rexrode KM, Buring JE, Manson JE. Abdominal and total adiposity and risk of coronary heart disease in men. Intl J. Obes Relat Metab Disord. 2001;25:1047–1056.
- 28. Arden CJ, Katzmarzyk PT, Janssen I, Ross R. Determinations of health risk by combined body mass index and waist circumference. Obes Res. 2003;11:135– 142.
- Alberti KG, Zimmet P. Metabolic syndrome

 a new world-wide definition. Aconcensus
 Statement from the International Diabetes
 Federation, Diabetic Medicine. 2006;23(5):
 469–480.
- 30. Adediran OS, Edo AE, Jimoh AK, Ohwororiole AE. Prevalence of the metabolic syndrome among Nigerians with type 2 diabetes. Diabetes Int. 2007;15:13-14.
- Tran A, Gelaye B, Girma B, Lemma S, Berhane Y, Bekele A, Williams MA. Prevalence of metabolic syndrome among working adults in Ethiopia. International Journal of Hypertension. 2011;1-8.
- 32. Puepe FH, Uloko A, Akogu IY, Aniekwensi E. Prevalence of the metabolic syndrome among patients with type 2 diabetes in urban North-Central Nigeria. J. Endocrinol Metab. 2009;8:10-2.
- Nwagha UI, Ikekpeazu EJ, Ejezie FE, Neboh EE. Atherogenic index of plasma as a useful predictor of cardiovascular risk among post-menopausal women in Enugu, Nigeria. African Health Sciences. 2010;10(3):248–252.
- Gaziano JM, Henne Kens CH, O'Donnell CJ, Breslow JL, Buring JE. Fastingtriglycerides, high-density lipoprotein and risk of myocardial infarction. Circulation. 1997;96:2520–2525.

APPENDIX A

No	AIP	WC	BMI <u>(kg/</u> m²)	FBS	Age (yrs)	рр	MAPB	DBP(mm/Hg)	SBP(mm/Hg)
1	0.577	89	48.23	107	53	50	96.667	80	130
2	0.230	84	42.78	79	52	40	93.333	80	120
3*	0.641	115	58.24	203	44	70	113.333	90	160
4	0.301	90	44.12	10	50	50	76.667	60	110
5	0.125	84	41.67	146	40	40	83.333	70	110
6	0.215	103	53.53	108	39	50	86.667	70	120
7	0.509	96	50.31	76	29	30	80.000	70	100
8	0.036	88	40.74	83	35	10	83.333	80	90
9	0.274	80	34.36	104	40	50	86.667	70	120
10	0.239	80	39.08	94	50	50	96.667	80	130
11	0.273	74	35.32	70	62	20	96.667	90	110
12	0.306	92	46.01	108	50	40	73.333	60	100
13	0.158	87	44.91	108	58	40	93.333	80	120
14	0.306	72	28.75	102	32	40	83.333	70	110
15*	0.493	99	44.67	134	51	50	106.667	90	140
16*	0.223	97	51.51	80	48	40	103.333	90	130
17	0.374	94	48.57	107	45	50	86.667	70	120
18*	0.567	118	63.16	91	37	50	106.667	90	140
19*	0.572	94	47.6	78	40	40	103.333	90	130
20	0.301	89	43.29	80	53	50	106.667	90	140
21	0.166	86	40.85	401	43	70	113.333	90	160
22	0.301	97	52.87	113	36	50	106.667	90	140
23	0.260	104	52.25	100	48	30	100.000	90	120
24	0.000	96	50.31	76	29	30	80.000	70	100
25	0.232	91	43.07	79	40	40	73.333	60	100
26	0.225	77	38.82	88	47	40	81.333	68	108
27*	0.454	94	47.85	100	47	10	93.333	90	100
28	0.222	65	31.65	89	22	20	96.667	90	110
29	0.301	93	50	89	43	10	93.333	90	100
30*	0.410	104	50.7	106	37	40	103.333	90	130
31*	0.020	96	48.05	99	48	40	103.333	90	130
32	0.465	99	52.26	85	26	40	93.333	80	120
33	0.322	67	46.88	82	34	39	92.000	79	118
34	0.426	100	50	102	54	40	93.333	80	120
35*	0.333	102	53.31	87	45	20	96.667	90	110
36	0.223	71	31.17	73	30	10	93.333	90	100
37	0.488	118	63.16	91	37	50	106.667	90	140
38	0.230	89	40.12	62	62	40	93.333	80	120
39	0.129	85	38.69	102	42	30	90.000	80	110
40	0.143	92	46.86	77	38	40	73.333	60	100
41	0.149	85	39.49	85	60	30	90.000	80	110
42	0.227	82	37.11	78	49	50	106.667	90	140
43	0.301	75	42.33	85	45	40	83.333	70	110
44	0 224	79	35.54	96	38	30	90,000	80	110
45	0.283	84	44 94	84	27	20	86 667	80	100
46	0.260	96	48.07	75	43	70	113 333	90	160
47	0.435	89	47.02	85	64	130	53.333	10	140
48*	0.462	102	55.28	105	40	20	96.667	90	110
49	0.056	81	41.21	89	40	50	86.667	70	120
50	0 264	88	42.6	227	56	30	100 000	90	120
51	0.372	69	31 25	98	35	40	93 333	80	120
52	0.106	83	37.5	84	38	60	100.000	80	140
53	0.505	85	43 67	91	36	40	03 333	80	120
54*	0.000	115	57 60	80	50	40	102 222	90	120
55	0.400	75	36.94	03 Q1	35	40	73 222	50 60	100
56	0.170	1 J 85	30.04	60 60	37	40	73 222	60	100
50 57	0.200	00	30.18 40.4	00	31 22	40	10.000	70	100
<i>כו</i>	0.497	91	49.4	90	33	40	03.333	10	110

Table A1. Cardiovascular parameters of ITC workers

10 (19) (19) (19) (19) (10) (No	AIP	WC	BMI	FBS	Age	рр	MAPB	DBP(mm/Hg)	SBP(mm/Hg)
33 0.331 0.332 70 110 60 0.570 114 52.87 84 36 20 96.677 90 110 61 0.512 102 52.66 61 51 30 100.000 90 120 62 0.499 88 35.29 97 56 50 86.667 70 120 63 0.255 97 41.04 75 52 108 121.000 85 193 64 0.213 91 49.4 90 33 40 83.333 70 110 66' 0.452 96 43.45 143 30 50 106.667 90 140 69' 0.351 92 43.8 83 39 50 96.667 80 130 70 0.338 104 49.628 87 40 40 93.333 80 120 71 0.464 90 <td>58</td> <td>0.501</td> <td>67</td> <td>(kg/m)</td> <td>212</td> <td>(yrs)</td> <td>30</td> <td>100.000</td> <td>00</td> <td>120</td>	58	0.501	67	(kg/m)	212	(yrs)	30	100.000	00	120
60 0.570 1.04 7.237 83 56 20 96.667 90 110 61 0.512 102 50.56 81 51 30 100.000 90 120 63 0.255 97 41.04 75 56 50 86.667 70 120 64 0.213 91 49.4 80 33 40 83.333 70 110 65 0.452 96 43.45 143 30 50 90.6667 80 140 67 0.230 94 46.28 83 42 40 93.333 80 120 71 0.433 91 46.88 93 52 40 93.333 80 120 72 0.352 96 50.31 76 29 30 80.000 70 100 74 0.233 102 52.78 74 51 70 133.33 110 <td>50 59</td> <td>0.301</td> <td>97</td> <td>48 13</td> <td>105</td> <td>29</td> <td>30 40</td> <td>83 333</td> <td>30 70</td> <td>120</td>	50 59	0.301	97	48 13	105	29	30 40	83 333	30 70	120
61* 0.512 102 50.56 81 51 50 86.67 70 120 62 0.255 97 41.04 90 93 55 50 86.67 70 120 64 0.213 97 56.73 83 50 50 106.667 90 140 65 0.140 99 56.73 83 40 83.333 70 110 66* 0.452 96 43.45 143 30 50 106.667 90 140 67 0.239 94 46.28 83 42 40 93.333 80 120 71 0.439 91 46.68 94 61 60 100.000 80 140 72 0.362 96 46.88 94 61 60 100.000 80 140 74 0.233 102 52.7 73 54 50 106.667 90 <td>60</td> <td>0.270</td> <td>104</td> <td>52.87</td> <td>84</td> <td>36</td> <td>20</td> <td>96 667</td> <td>90</td> <td>110</td>	60	0.270	104	52.87	84	36	20	96 667	90	110
12 14.00 88 15.29 17 56 50 86.667 70 120 63 0.255 97 41.04 75 52 108 121.000 85 193 64 0.213 91 49.4 90 33 40 83.333 70 110 65 0.452 96 43.45 1143 30 50 106.667 90 140 67 0.290 94 46.28 83 42 40 93.333 80 120 68 0.273 83 40.63 91 40 93.333 80 120 71 0.433 91 46.86 93 52 40 93.333 80 120 72 0.352 96 50.31 76 29 30 80.000 70 100 74 0.233 102 52.78 74 51 70 133.33 110 180 <td>61*</td> <td>0.512</td> <td>102</td> <td>50.56</td> <td>81</td> <td>51</td> <td>30</td> <td>100.000</td> <td>90</td> <td>120</td>	61*	0.512	102	50.56	81	51	30	100.000	90	120
63 0.255 97 41.04 75 52 108 121.000 85 193 64 0.213 91 49.4 90 33 50 50 106.667 90 140 66' 0.452 96 43.45 143 50 50 106.667 90 140 67' 0.230 94 46.28 83 42 40 93.333 80 120 68 0.351 92 43.9 83 39 50 96.667 80 130 70 0.398 104 49.68 97 40 40 93.333 80 120 71 0.430 91 46.86 94 61 60 100.000 80 140 73' 0.416 90 52.7 76 54 17 90 83.333 80 120 70 0.541 19 67.28 62 56 80	62	0.499	88	35.29	97	56	50	86.667	70	120
64 0.213 91 49.4 90 33 40 83.333 70 110 65 0.140 99 56.73 83 50 106.667 90 140 66 0.452 96 43.45 143 30 50 106.667 90 140 67 0.290 94 46.28 83 42 40 93.333 80 120 68 0.273 83 40.68 93 52 40 93.333 80 120 71 0.493 91 46.86 93 52 40 93.333 80 120 72 0.352 96 46.88 94 61 60 100.000 80 140 74 0.233 102 52.78 74 51 70 1333 110 80 76' 0.591 119 67.28 62 50 106.667 90 140	63	0.255	97	41.04	75	52	108	121.000	85	193
65 0.440 99 65.73 83 50 50 106.667 90 140 67 0.230 94 46.28 83 42 40 93.333 80 120 68 0.273 83 40.63 81 45 50 106.667 80 130 69 0.351 92 43.93 83 39 50 96.667 80 130 70 0.398 91 46.86 93 52 40 93.333 80 120 72 0.352 96 46.88 94 61 60 100.000 80 140 73 0.416 90 52.77 87 74 51 70 133.333 110 180 75 0.350 96 50.31 76 29 30 80.000 70 100 76 0.54 107 55.56 101 40 50 106.667 90 140 78 0.464 91 40.12 61 47 </td <td>64</td> <td>0.213</td> <td>91</td> <td>49.4</td> <td>90</td> <td>33</td> <td>40</td> <td>83.333</td> <td>70</td> <td>110</td>	64	0.213	91	49.4	90	33	40	83.333	70	110
66' 0.452 96 43.45 143 30 50 106.667 90 140 67 0.290 94 46.28 83 42 40 93.333 80 120 68 0.351 92 43.9 83 39 50 96.667 80 130 70 0.398 104 49.69 87 40 40 93.333 80 120 71 0.432 91 46.86 93 52 40 93.333 80 120 72 0.352 96 46.88 94 61 60 100.000 80 140 73 0.416 90 5.27 74 51 70 133.33 110 180 74 0.233 107 55.56 101 40 50 166.667 90 140 75 0.499 125 51 10 66 90 160 160	65	0.140	99	56.73	83	50	50	106.667	90	140
67 0.290 94 46.28 83 42 40 93.333 80 120 68 0.273 83 40.63 81 45 50 96.667 80 130 70 0.398 104 49.69 87 40 93.333 80 120 71 0.493 91 46.86 93 52 40 93.333 80 120 72 0.352 96 46.88 94 61 60 100.000 80 140 73 0.416 90 5.27 86 54 -26 101.333 110 84 74 0.531 102 52.78 74 51 70 133.333 80 120 75 0.354 107 55.56 101 40 50 106.667 90 140 76 0.546 107 55.56 101 40 93.333 80 120 80 0.486 83 41.57 90 35 40 93.333 <	66*	0.452	96	43.45	143	30	50	106.667	90	140
68 0.273 83 40.63 81 45 50 106.667 90 140 70 0.398 104 49.69 87 40 40 93.333 80 120 71 0.439 91 46.86 93 52 40 93.333 80 120 72 0.352 96 46.88 94 61 60 100.000 80 140 74 0.233 102 52.78 74 51 70 133.33 110 180 75 0.305 96 50.31 76 252 50 106.667 90 140 76* 0.591 119 67.25 50 106.667 90 140 78 0.499 125 61.25 90 52 50 106.667 90 140 79 0.486 83 41.57 90 35.4 40 93.333 80 110	67	0.290	94	46.28	83	42	40	93.333	80	120
69 0.351 92 43,9 83 39 50 96.667 80 130 71 0.493 91 46.86 93 52 40 93.333 80 120 72 0.352 96 46.88 94 61 60 100.000 80 140 73* 0.416 90 5.27 36 54 -26 101.333 110 84 74* 0.233 102 52.78 74 51 70 133.333 110 180 75 0.305 96 50.31 76 29 30 80.000 70 100 76* 0.564 107 55.56 101 40 50 106.667 90 140 78* 0.499 125 61.25 90 52 50 106.667 90 140 78* 0.494 95 45.24 81 42 50 86.667 <td< td=""><td>68</td><td>0.273</td><td>83</td><td>40.63</td><td>81</td><td>45</td><td>50</td><td>106.667</td><td>90</td><td>140</td></td<>	68	0.273	83	40.63	81	45	50	106.667	90	140
70 0.338 104 49.69 87 40 40 93.333 80 120 71 0.433 94 46.86 93 52 40 93.333 80 120 72 0.346 96 46.88 94 61 60 100.000 80 140 73* 0.416 90 5.27 36 54 -26 101.333 110 84 74* 0.233 102 52.78 74 51 70 133.333 110 180 76* 0.591 119 67.26 50 52 50 106.667 90 140 78 0.499 125 61.25 90 52 50 106.667 90 140 79 0.486 83 41.57 90 35 40 93.333 80 120 80 0.444 85 48.44 81 62 50 86.667 70 120 81 0.494 95 48.24 81 42 <t< td=""><td>69</td><td>0.351</td><td>92</td><td>43.9</td><td>83</td><td>39</td><td>50</td><td>96.667</td><td>80</td><td>130</td></t<>	69	0.351	92	43.9	83	39	50	96.667	80	130
71 0.493 91 46.86 93 52 40 93.333 80 120 72 0.352 96 46.88 94 61 60 100.000 80 140 74* 0.233 102 52.78 74 51 70 133.333 110 84 75 0.305 96 50.31 76 29 30 80.000 70 100 76* 0.591 119 67.28 62 56 80 126.667 100 180 77* 0.564 107 55.56 101 40 50 106.667 90 140 78 0.486 83 41.57 90 35.33 80 120 80 0.324 91 40.12 61 47 30 90.000 80 110 81 0.450 95 48.24 81 42 50 106.667 70 120 82 0.442 184 84 74 61 40 83.33 <t< td=""><td>70</td><td>0.398</td><td>104</td><td>49.69</td><td>87</td><td>40</td><td>40</td><td>93.333</td><td>80</td><td>120</td></t<>	70	0.398	104	49.69	87	40	40	93.333	80	120
72 0.352 96 46.88 94 61 60 100.000 80 140 73* 0.416 90 5.27 36 54 -26 101.33.33 110 84 74* 0.233 102 52.78 74 51 70 133.333 110 84 75 0.305 96 50.31 76 29 30 80.000 70 100 76* 0.591 119 67.28 62 56 80 126.667 100 180 77* 0.564 107 55.56 101 40 50 106.667 90 140 79 0.486 83 41.57 90 35 40 93.333 80 120 80 0.324 91 40.12 61 47 30 90.00 80 110 81 0.167 98 44.64 81 62 50 86.67 70 120 83 0.449 95 48.24 81 42 <	71	0.493	91	46.86	93	52	40	93.333	80	120
73* 0.23 102 527 36 54 -26 101.333 110 84 74* 0.233 102 52.78 74 51 70 133.333 110 180 75* 0.591 119 67.28 62 56 80 126.667 100 180 77* 0.564 107 55.56 101 40 50 106.667 90 140 78* 0.499 125 61.25 90 52 50 106.667 90 140 79 0.466 83 41.57 90 35 40 93.333 80 120 80 0.324 91 40.12 61 47 30 90.000 80 110 81 145 50 86.667 70 120 120 120 140 140 133.33 90 160 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140	72	0.352	96	46.88	94	61	60	100.000	80	140
14 0.233 102 2.7.8 74 51 70 13.333 110 180 75 0.305 96 50.31 76 29 30 80.000 70 100 76* 0.564 107 55.56 101 40 50 106.667 90 140 78* 0.499 125 61.25 90 52 50 106.667 90 140 80 0.324 91 40.12 61 47 30 90.000 80 110 81 0.167 98 44.64 81 62 50 86.667 70 120 82 0.142 108 59.52 81 34 50 166.667 70 120 83 0.494 95 48.24 81 42 50 106.667 70 140 84 0.500 91 41.32 104 48 70 113.333 70 110 86 0.301 99 51.52 84 41 <	73*	0.416	90	5.27	36	54	-26	101.333	110	84
75 0.305 90 30.31 70 29 30 80.000 70 100 76* 0.564 107 55.56 101 40 50 106.667 90 140 78* 0.499 125 61.25 90 52 50 106.667 90 140 79 0.486 83 41.57 90 35 40 93.333 80 120 80 0.324 91 40.12 61 47 30 90.000 80 110 81 0.167 98 44.64 81 62 50 86.667 70 120 82 0.449 95 48.24 81 42 50 106.667 90 140 84 0.500 91 41.32 104 48 70 113.333 90 160 86 0.548 98 46.43 74 61 40 83.333 70 110 87 0.367 124 72.28 65 33	74° 75	0.233	102	52.78	74	51	70	133.333	110	180
10 0.391 119 07.25 0.52 02 050 106.667 90 140 78 0.486 83 41.57 90 52 50 106.667 90 140 79 0.486 83 41.57 90 35 40 93.333 80 120 80 0.324 91 40.12 61 47 30 90.000 80 110 81 0.167 98 44.64 81 62 50 86.667 70 120 82 0.142 108 59.52 81 34 50 86.667 70 120 83 0.494 95 48.24 81 42 50 106.667 80 160 84 0.500 91 51.52 84 41 50 106.667 80 160 80 0.447 98 48.78 81 38 50 106.667 80<	/5 76*	0.305	96	50.31	76	29 EC	30	80.000	70	100
<i>I</i> 0.0.00 40 30 100.001 40 30 100.001 40 78 0.486 83 41.57 90 35 40 93.333 80 120 80 0.324 91 40.12 61 47 30 90.000 80 110 82 0.442 108 59.52 81 34 50 86.667 70 120 83 0.449 95 48.24 81 42 50 106.667 90 140 84 0.500 91 41.32 104 48 70 113.333 90 160 85 0.548 98 46.43 74 61 40 83.333 70 110 86 0.317 92 424 72.28 65 33 20 86.667 80 100 90 0.564 69 30 66 30 30 90.000 80 140 93 0.186 85 32.5 33 38 40 <td>70 77*</td> <td>0.591</td> <td>107</td> <td>07.20 55.56</td> <td>0Z 101</td> <td>30</td> <td>0U 50</td> <td>120.007</td> <td>100</td> <td>100</td>	70 77*	0.591	107	07.20 55.56	0Z 101	30	0U 50	120.007	100	100
10 0.433 12.5 01.20 30 32 30 12.5 100.007 100 80 0.324 91 40.12 61 47 30 90.000 80 110 80 0.324 91 40.12 61 47 30 90.000 80 110 81 0.167 98 44.64 81 62 50 86.667 70 120 82 0.142 108 59.52 81 34 50 86.667 70 120 83 0.494 95 48.24 81 42 50 106.667 70 140 84 0.500 91 41.32 104 48 70 1140 83.333 70 110 86 0.301 99 51.52 84 41 50 106.667 80 160 87 0.47 72.8 85 32.5 33 38 50 106.667 80 100 90 0.564 69 30 66	70*	0.504	107	55.50 61.25	00	40 52	50	106.007	90	140
13 0.432 91 40.12 61 47 30 90.000 80 110 81 0.167 98 44.64 81 62 50 86.667 70 120 82 0.142 108 59.52 81 34 50 86.667 70 120 82 0.142 108 59.52 81 34 50 86.667 70 120 83 0.494 95 48.24 81 42 50 106.667 90 140 84 0.528 86 36.42 88 60 80 106.667 90 140 85 0.564 69 30 66 33 20 86.667 80 160 86 0.347 72.28 65 33 20 86.667 80 100 90 0.564 69 30 66 30 30 90.000 80 110 91 0.314 71 29.76 74 45 40 73.333	70	0.499	83	11 57	90	35	JU 40	03 333	30 80	120
0.02.1 0.1 0.1 1 0.0 0.0.00 0.0 100 81 0.142 108 59.52 81 34 50 86.667 70 120 83 0.494 95 48.24 81 42 50 106.667 90 140 84 0.500 91 41.32 104 48 70 113.333 90 160 85 0.548 98 46.43 74 61 40 83.333 70 110 86 0.301 99 51.52 84 41 50 106.667 90 140 87 0.528 86 36.42 88 60 80 106.667 90 140 89 0.387 124 72.28 65 33 20 86.667 80 100 90 0.564 69 30 66 30 30 90.000 80 110 91 0.314 71 29.76 333 60 100 100	80	0.400	91	40.12	61	47	30	90.000	80	110
32 0.142 108 59.52 81 34 50 86.667 70 120 83 0.494 95 48.24 81 42 50 106.667 90 140 84 0.500 91 41.32 104 48 70 113.333 90 160 85 0.548 98 46.43 74 61 40 83.333 70 110 86 0.347 98 48.78 81 38 50 106.667 90 140 89 0.387 124 72.28 66 30 100 6667 80 100 90 0.564 69 30 66 30.000 80 110 91 0.314 71 29.76 74 45 40 73.333 60 100 92 0.431 118 64.53 1113 39 66.667 90 110 <th< td=""><td>81</td><td>0.027</td><td>98</td><td>44 64</td><td>81</td><td>62</td><td>50</td><td>86 667</td><td>70</td><td>120</td></th<>	81	0.027	98	44 64	81	62	50	86 667	70	120
33 0.494 95 48.24 81 42 50 100.6667 90 140 84 0.500 91 41.32 104 48 70 113.333 90 160 85 0.548 98 46.43 74 61 40 83.333 70 110 86 0.301 99 51.52 84 41 50 106.667 90 140 87 0.528 86 36.7 80 160 88 0.447 98 48.78 81 338 50 106.667 90 140 99 0.387 124 72.28 65 33 20 86.667 80 100 91 0.314 71 29.76 74 45 40 73.333 60 100 90 120 92 0.431 118 64.53 111 39 60 100.000 90 120 100	82	0.142	108	59.52	81	34	50	86 667	70	120
84 0.500 91 41.32 104 48 70 113.333 90 160 85 0.548 98 46.43 74 61 40 83.333 70 110 86 0.301 99 51.52 84 41 50 106.667 90 140 87 0.528 86 36.42 88 60 80 106.667 90 140 88 0.447 98 48.78 81 38 50 106.667 80 100 90 0.564 69 30 66 30 30 90.000 80 110 91 0.314 71 29.76 74 45 40 73.333 60 100 92 0.431 118 64.53 111 39 60 100.000 80 140 93 0.186 85 32.5 33 38 40 73.333 60 100 94 0.372 80 40 71 26 30	83	0.494	95	48.24	81	42	50	106.667	90	140
85 0.548 98 46.43 74 61 40 83.333 70 110 86 0.301 99 51.52 84 41 50 106.667 80 160 87 0.528 86 36.42 88 60 80 106.667 80 160 88 0.447 98 48.78 81 38 50 106.667 90 140 89 0.387 124 72.28 65 33 20 86.667 80 100 90 0.564 69 30 66 30 90.000 80 110 91 0.314 71 29.76 74 45 40 73.333 60 100 92 0.431 118 64.53 111 39 60 100.000 90 120 95 0.204 95 48.24 76 36 20 96.667 90 110 96 0.427 100 67.76 81 53 40 93.333	84	0.500	91	41.32	104	48	70	113.333	90	160
86 0.301 99 51.52 84 41 50 106.667 90 140 87 0.528 86 36.42 88 60 80 106.667 80 160 88 0.447 98 48.78 81 38 50 106.667 90 140 90 0.564 69 30 66 33 20 86.667 80 100 91 0.314 71 29.76 74 45 40 73.333 60 100 92 0.431 118 64.53 111 39 60 100.000 80 140 93 0.186 85 32.5 33 38 40 73.333 60 100 94 0.372 80 40 71 26 30 100.000 90 120 95 0.204 95 48.24 76 36 40 93.333 100	85	0.548	98	46.43	74	61	40	83.333	70	110
87 0.528 86 36.42 88 60 80 106.667 80 160 88 0.447 98 48.78 81 38 50 106.667 90 140 90 0.564 69 30 66 30 30 90.000 80 110 91 0.314 71 29.76 74 45 40 73.333 60 100 92 0.431 118 64.53 111 39 60 100.000 80 140 93 0.186 85 32.5 33 38 40 73.333 60 100 94 0.372 80 40 71 26 30 100.000 90 120 95 0.204 95 48.24 76 36 20 96.667 90 110 96 0.427 100 67.76 81 53 40 93.333 80 120 98 0.255 82 37.13 79 56 40	86	0.301	99	51.52	84	41	50	106.667	90	140
88 0.447 98 48.78 81 38 50 106.667 90 140 89 0.387 124 72.28 65 33 20 86.667 80 100 90 0.564 69 30 66 30 90.000 80 110 91 0.314 71 29.76 74 45 40 73.333 60 100 92 0.431 118 64.53 111 39 60 100.000 80 140 93 0.186 85 32.5 33 38 40 73.333 60 100 94 0.372 80 40 71 26 30 100.000 90 120 95 0.204 95 48.24 76 36 20 96.667 80 100 97 0.337 95 46.79 95 48 40 93.333 80 120 <	87	0.528	86	36.42	88	60	80	106.667	80	160
89 0.387 124 72.28 65 33 20 86.667 80 100 90 0.564 69 30 66 30 30 90.000 80 110 91 0.314 71 29.76 74 45 40 73.333 60 100 92 0.431 118 64.53 111 39 60 100.000 80 140 93 0.186 85 32.5 33 38 40 73.333 60 100 94 0.372 80 40 71 26 30 100.000 90 120 95 0.204 95 48.24 76 36 20 96.667 90 110 96 0.427 100 67.76 81 53 40 93.333 80 120 98 0.255 82 37.13 79 56 40 113.333 100 140 100* -0.477 70 36.67 127 38 20 <td>88</td> <td>0.447</td> <td>98</td> <td>48.78</td> <td>81</td> <td>38</td> <td>50</td> <td>106.667</td> <td>90</td> <td>140</td>	88	0.447	98	48.78	81	38	50	106.667	90	140
90 0.564 69 30 66 30 30 90.000 80 110 91 0.314 71 29.76 74 45 40 73.333 60 100 92 0.431 118 64.53 111 39 60 100.000 80 140 93 0.186 85 32.5 33 38 40 73.333 60 100 94 0.372 80 40 71 26 30 100.000 90 120 95 0.204 95 48.24 76 36 20 96.67 90 110 96 0.427 100 67.76 81 53 40 83.333 80 120 98 0.255 82 37.13 79 56 40 113.333 100 140 99 -0.477 70 36.67 127 38 20 86.67 80	89	0.387	124	72.28	65	33	20	86.667	80	100
91 0.314 71 29.76 74 45 40 73.333 60 100 92 0.431 118 64.53 111 39 60 100.000 80 140 93 0.186 85 32.5 33 38 40 73.333 60 100 94 0.372 80 40 71 26 30 100.000 90 120 95 0.204 95 48.24 76 36 20 96.667 90 110 96 0.427 100 67.76 81 53 40 93.333 80 120 98 0.255 82 37.13 79 56 40 113.333 100 140 99 -0.477 70 36.67 127 38 20 86.667 80 100 101 -0.519 88 42.6 227 56 30 100.000 90 120 102 0.194 69 31.25 98 35 40	90	0.564	69	30	66	30	30	90.000	80	110
92 0.431 118 64.53 1113960100.0008014093 0.186 85 32.5 33 38 40 73.333 60 10094 0.372 80 40 71 26 30 100.000 90 120 95 0.204 95 48.24 76 36 20 96.667 90 110 96 0.427 100 67.76 81 53 40 83.333 70 110 97 0.337 95 46.79 95 48 40 93.333 80 120 98 0.255 82 37.13 79 56 40 113.333 100 140 99 -0.477 70 36.67 127 38 20 86.667 80 100 100^* -0.383 88 31.71 90 24 30 100.000 90 120 101 -0.519 88 42.6 227 56 30 100.000 90 120 102 0.194 69 31.25 98 35 40 93.333 80 120 103 0.143 83 37.5 84 38 60 100.000 80 140 104 -0.454 85 43.67 91 36 40 93.333 80 120 105 0.18 91 41.32 104 48 70	91	0.314	71	29.76	74	45	40	73.333	60	100
93 0.186 85 32.5 33 38 40 73.333 60 100 94 0.372 80 40 71 26 30 100.000 90 120 95 0.204 95 48.24 76 36 20 96.667 90 110 96 0.427 100 67.76 81 53 40 83.333 70 110 97 0.337 95 46.79 95 48 40 93.333 80 120 98 0.255 82 37.13 79 56 40 113.333 100 140 99 -0.477 70 36.67 127 38 20 86.667 80 100 100* -0.383 88 31.71 90 24 30 100.000 90 120 101 -0.519 88 42.6 227 56 30 100.000 80 140 104 -0.454 85 43.67 91 36	92	0.431	118	64.53	111	39	60	100.000	80	140
94 0.372 8040712630100.0009012095 0.204 95 48.24 763620 96.667 9011096 0.427 100 67.76 815340 83.333 7011097 0.337 95 46.79 954840 93.333 8012098 0.255 82 37.13 795640113.33310014099 -0.477 70 36.67 1273820 86.667 80100101 -0.519 88 42.6 2275630100.00090120102 0.194 69 31.25 983540 93.333 80120103 0.143 83 37.5 843860100.00080140104 -0.454 85 43.67 913640 93.333 80120105 0.018 91 41.32 1044870113.33390160106 0.374 98 46.43 746140 83.333 70110107 0.567 99 51.52 844150106.66790140108* 0.572 94 48.57 1074550 86.667 70120109 0.301 118 63.16 913750106.66790140<	93	0.186	85	32.5	33	38	40	73.333	60	100
95 0.204 95 48.24 76 36 20 96.667 90 110 96 0.427 100 67.76 81 53 40 83.333 70 110 97 0.337 95 46.79 95 48 40 93.333 80 120 98 0.255 82 37.13 79 56 40 113.333 100 140 99 -0.477 70 36.67 127 38 20 86.667 80 100 100^* -0.383 88 31.71 90 24 30 100.000 90 120 101 -0.519 88 42.6 227 56 30 100.000 90 120 102 0.194 69 31.25 98 35 40 93.333 80 120 103 0.143 83 37.5 84 38 60 100.000 80 140 104 -0.454 85 43.67 91 36 40 93.333 80 120 105 0.018 91 41.32 104 48 70 113.333 90 160 106 0.374 98 46.43 74 61 40 83.333 70 110 107 0.572 94 48.57 107 45 50 86.667 70 120 109 0.301 118 63.16 91 <td>94</td> <td>0.372</td> <td>80</td> <td>40</td> <td>/1</td> <td>26</td> <td>30</td> <td>100.000</td> <td>90</td> <td>120</td>	94	0.372	80	40	/1	26	30	100.000	90	120
96 0.427 10061.7681534083.3337011097 0.337 9546.7995484093.3338012098 0.255 8237.13795640113.33310014099 -0.477 7036.67127382086.66780100100* -0.383 8831.71902430100.00090120101 -0.519 8842.62275630100.00090120102 0.194 6931.2598354093.33380120103 0.143 8337.5843860100.00080140104 -0.454 8543.6791364093.33380120105 0.018 9141.321044870113.33390160106 0.374 9846.4374614083.33370110107 0.567 9951.52844150106.66790140108* 0.572 9448.57107455086.66770120109 0.301 11863.16913750106.66790140110 0.166 9447.6784040.333390130111 0.301 89<	95	0.204	95	48.24	76	36	20	96.667	90	110
97 0.337 9546.7995464095.5356012098 0.255 82 37.13 795640 113.333 10014099 -0.477 70 36.67 127 38 20 86.667 80 100100* -0.383 88 31.71 902430 100.000 90120101 -0.519 88 42.6 227 56 30 100.000 90120102 0.194 69 31.25 98 35 40 93.333 80 120103 0.143 83 37.5 84 38 60 100.000 80 140 104 -0.454 85 43.67 91 36 40 93.333 80 120105 0.018 91 41.32 104 48 70 113.333 90 160106 0.374 98 46.43 74 61 40 83.333 70 110 107 0.567 99 51.52 84 41 50 106.667 90 140 108* 0.572 94 48.57 107 45 50 86.667 70 120 109 0.301 118 63.16 91 37 50 106.667 90 140 110 0.166 94 47.6 78 40 103.333 90 130 111<	96	0.427	100	07.70	05	23	40	03.333	70	110
35 0.2.33 0.2 37.13 79 30 40 113.33 100 140 99 -0.477 70 36.67 127 38 20 86.667 80 100 100* -0.383 88 31.71 90 24 30 100.000 90 120 101 -0.519 88 42.6 227 56 30 100.000 90 120 102 0.194 69 31.25 98 35 40 93.333 80 120 103 0.143 83 37.5 84 38 60 100.000 80 140 104 -0.454 85 43.67 91 36 40 93.333 80 120 105 0.018 91 41.32 104 48 70 113.333 90 160 106 0.374 98 46.43 74 61 40 83.333 70 110 107 0.567 99 51.52 84 41	97	0.337	90 82	40.79	95 70	40 56	40	93.333	00 100	120
100^* -0.383 88 31.71 90 24 30 100.000 90 120 101 -0.519 88 42.6 227 56 30 100.000 90 120 102 0.194 69 31.25 98 35 40 93.333 80 120 103 0.143 83 37.5 84 38 60 100.000 80 140 104 -0.454 85 43.67 91 36 40 93.333 80 120 105 0.018 91 41.32 104 48 70 113.333 90 160 106 0.374 98 46.43 74 61 40 83.333 70 110 107 0.567 99 51.52 84 41 50 106.667 90 140 108 0.572 94 48.57 107 45 50 86.667 70 120 109 0.301 118 63.16 91 37 50 106.667 90 140 110 0.166 94 47.6 78 40 40 73.333 60 100 111 0.301 89 43.29 80 53 50 106.667 90 140 111 0.301 89 43.29 80 53 50 106.667 90 140 111 0.301 89 43.29 </td <td>90</td> <td>-0.233</td> <td>70</td> <td>36.67</td> <td>127</td> <td>38</td> <td>20</td> <td>86 667</td> <td>80</td> <td>140</td>	90	-0.233	70	36.67	127	38	20	86 667	80	140
101 -0.519 88 42.6 227 56 30 100.000 90 120 102 0.194 69 31.25 98 35 40 93.333 80 120 103 0.143 83 37.5 84 38 60 100.000 80 140 104 -0.454 85 43.67 91 36 40 93.333 80 120 105 0.018 91 41.32 104 48 70 113.333 90 160 106 0.374 98 46.43 74 61 40 83.333 70 110 107 0.567 99 51.52 84 41 50 106.667 90 140 108 0.572 94 48.57 107 45 50 86.667 70 120 109 0.301 118 63.16 91 37 50 106.667 90 140 110 0.166 94 47.6 78 40 403.333 90 130 111 0.301 89 43.29 80 53 50 106.667 90 140 112 0.499 91 43.07 79 40 40 73.333 60 100 113 0.255 77 38.82 88 47 40 81.333 68 108 114 0.213 94 47.85 100	100*	-0.383	88	31 71	90	24	30	100 000	90	120
102 0.194 69 31.25 120 120 120 103 0.143 83 37.5 84 38 60 100.000 80 140 104 -0.454 85 43.67 91 36 40 93.333 80 120 105 0.018 91 41.32 104 48 70 113.333 90 160 106 0.374 98 46.43 74 61 40 83.333 70 110 107 0.567 99 51.52 84 41 50 106.667 90 140 108 0.572 94 48.57 107 45 50 86.667 70 120 109 0.301 118 63.16 91 37 50 106.667 90 140 110 0.166 94 47.6 78 40 40 103.333 90 130 111 0.301 89 43.29 80 53 50 106.667 90 140 112 0.499 91 43.07 79 40 40 73.333 60 100 113 0.255 77 38.82 88 47 40 81.333 68 108 114 0.213 94 47.85 100 47 10 93.333 90 100 115 0.146 50.7 106 37 40 103.333 <td>101</td> <td>-0.519</td> <td>88</td> <td>42.6</td> <td>227</td> <td>56</td> <td>30</td> <td>100.000</td> <td>90</td> <td>120</td>	101	-0.519	88	42.6	227	56	30	100.000	90	120
103 0.143 83 37.5 84 38 60 100.000 80 140 104 -0.454 85 43.67 91 36 40 93.333 80 120 105 0.018 91 41.32 104 48 70 113.333 90 160 106 0.374 98 46.43 74 61 40 83.333 70 110 107 0.567 99 51.52 84 41 50 106.667 90 140 108* 0.572 94 48.57 107 45 50 86.667 70 120 109 0.301 118 63.16 91 37 50 106.667 90 140 110 0.166 94 47.6 78 40 40 103.333 90 130 111 0.301 89 43.29 80 53 50 106.667 90 140 112 0.499 91 43.07 79 40 40 73.333 60 100 113 0.255 77 38.82 88 47 40 81.333 68 108 114 0.213 94 47.85 100 47 10 93.333 90 100 115 0.140 65 31.65 89 22 20 96.667 90 110 116^* 0.452 93 50 89 43 10 93.333 90	102	0.194	69	31.25	98	35	40	93.333	80	120
104 -0.454 85 43.67 91 36 40 93.333 80 120 105 0.018 91 41.32 104 48 70 113.333 90 160 106 0.374 98 46.43 74 61 40 83.333 70 110 107 0.567 99 51.52 84 41 50 106.667 90 140 108^* 0.572 94 48.57 107 45 50 86.667 70 120 109 0.301 118 63.16 91 37 50 106.667 90 140 110 0.166 94 47.6 78 40 40 103.333 90 130 111 0.301 89 43.29 80 53 50 106.667 90 140 112 0.499 91 43.07 79 40 40 73.333 60 100 113 0.255 77 38.82 88 47 40 81.333 68 108 114 0.213 94 47.85 100 47 10 93.333 90 100 115 0.140 65 31.65 89 22 20 96.667 90 110 116^* 0.452 93 50 89 43 10 93.333 90 100 117^* 0.460 104 50.7 <td>103</td> <td>0.143</td> <td>83</td> <td>37.5</td> <td>84</td> <td>38</td> <td>60</td> <td>100.000</td> <td>80</td> <td>140</td>	103	0.143	83	37.5	84	38	60	100.000	80	140
105 0.018 91 41.32 104 48 70 113.333 90 160 106 0.374 98 46.43 74 61 40 83.333 70 110 107 0.567 99 51.52 84 41 50 106.667 90 140 108^* 0.572 94 48.57 107 45 50 86.667 70 120 109 0.301 118 63.16 91 37 50 106.667 90 140 110 0.166 94 47.6 78 40 40 103.333 90 130 111 0.301 89 43.29 80 53 50 106.667 90 140 112 0.499 91 43.07 79 40 40 73.333 60 100 113 0.255 77 38.82 88 47 40 81.333 68 108 114 0.213 94 47.85 100 47 10 93.333 90 100 115 0.140 65 31.65 89 22 20 96.667 90 110 116^* 0.452 93 50 89 43 10 93.333 90 100 117^* 0.460 104 50.7 106 37 40 103.333 90 130 118 0.176 94 48.57 <td>104</td> <td>-0.454</td> <td>85</td> <td>43.67</td> <td>91</td> <td>36</td> <td>40</td> <td>93.333</td> <td>80</td> <td>120</td>	104	-0.454	85	43.67	91	36	40	93.333	80	120
106 0.374 98 46.43 74 61 40 83.333 70 110 107 0.567 99 51.52 84 41 50 106.667 90 140 108^* 0.572 94 48.57 107 45 50 86.667 70 120 109 0.301 118 63.16 91 37 50 106.667 90 140 110 0.166 94 47.6 78 40 40 103.333 90 130 111 0.301 89 43.29 80 53 50 106.667 90 140 112 0.499 91 43.07 79 40 40 73.333 60 100 113 0.255 77 38.82 88 47 40 81.333 68 108 114 0.213 94 47.85 100 47 10 93.333 90 100 115 0.140 65 31.65 89 22 20 96.667 90 110 116^* 0.452 93 50 89 43 10 93.333 90 100 117^* 0.460 104 50.7 106 37 40 103.333 90 130 118 0.176 94 48.57 107 45 50 86.667 70 120	105	0.018	91	41.32	104	48	70	113.333	90	160
107 0.567 99 51.52 84 41 50 106.667 90 140 108^* 0.572 94 48.57 107 45 50 86.667 70 120 109 0.301 118 63.16 91 37 50 106.667 90 140 110 0.166 94 47.6 78 40 40 103.333 90 130 111 0.301 89 43.29 80 53 50 106.667 90 140 112 0.499 91 43.07 79 40 40 73.333 60 100 113 0.255 77 38.82 88 47 40 81.333 68 108 114 0.213 94 47.85 100 47 10 93.333 90 100 115 0.140 65 31.65 89 22 20 96.667 90 110 115 0.452 93 50 89 43 10 93.333 90 100 117^* 0.460 104 50.7 106 37 40 103.333 90 130 118 0.176 94 48.57 107 45 50 86.667 70 120	106	0.374	98	46.43	74	61	40	83.333	70	110
108^* 0.572 94 48.57 107 45 50 86.667 70 120 109 0.301 118 63.16 91 37 50 106.667 90 140 110 0.166 94 47.6 78 40 40 103.333 90 130 111 0.301 89 43.29 80 53 50 106.667 90 140 112 0.499 91 43.07 79 40 40 73.333 60 100 113 0.255 77 38.82 88 47 40 81.333 68 108 114 0.213 94 47.85 100 47 10 93.333 90 100 115 0.140 65 31.65 89 22 20 96.667 90 110 116^* 0.452 93 50 89 43 10 93.333 90 100 117^* 0.460 104 50.7 106 37 40 103.333 90 130 118 0.176 94 48.57 107 45 50 86.667 70 120	107	0.567	99	51.52	84	41	50	106.667	90	140
109 0.301 118 63.16 91 37 50 106.667 90 140 110 0.166 94 47.6 78 40 40 103.333 90 130 111 0.301 89 43.29 80 53 50 106.667 90 140 112 0.499 91 43.07 79 40 40 73.333 60 100 113 0.255 77 38.82 88 47 40 81.333 68 108 114 0.213 94 47.85 100 47 10 93.333 90 100 115 0.140 65 31.65 89 22 20 96.667 90 110 116^* 0.452 93 50 89 43 10 93.333 90 100 117^* 0.460 104 50.7 106 37 40 103.333 90 130 118 0.176 94 48.57 107 45 50 86.667 70 120	108*	0.572	94	48.57	107	45	50	86.667	70	120
110 0.166 9447.6784040 103.333 90130111 0.301 89 43.29 805350 106.667 90140112 0.499 91 43.07 794040 73.333 60100113 0.255 77 38.82 884740 81.333 68108114 0.213 94 47.85 1004710 93.333 90100115 0.140 65 31.65 892220 96.667 90110116* 0.452 9350894310 93.333 90100117* 0.460 104 50.7 1063740 103.333 90130118 0.176 94 48.57 1074550 86.667 70120	109	0.301	118	63.16	91	37	50	106.667	90	140
111 0.301 89 43.29 80 53 50 106.667 90 140 112 0.499 91 43.07 79 40 40 73.333 60 100 113 0.255 77 38.82 88 47 40 81.333 68 108 114 0.213 94 47.85 100 47 10 93.333 90 100 115 0.140 65 31.65 89 22 20 96.667 90 110 116* 0.452 93 50 89 43 10 93.333 90 100 117* 0.460 104 50.7 106 37 40 103.333 90 130 118 0.176 94 48.57 107 45 50 86.667 70 120	110	0.166	94	47.6	78	40	40	103.333	90	130
112 0.499 91 43.07 794040 73.333 60100113 0.255 77 38.82 88 47 40 81.333 68 108114 0.213 94 47.85 100 47 10 93.333 90100115 0.140 65 31.65 89 2220 96.667 90110116* 0.452 9350 89 43 10 93.333 90100117* 0.460 104 50.7 106 37 40103.33390130118 0.176 94 48.57 107 45 50 86.667 70120	111	0.301	89	43.29	80	53	50	106.667	90	140
113 0.255 77 38.82 88 47 40 81.333 68 108 114 0.213 94 47.85 100 47 10 93.333 90 100 115 0.140 65 31.65 89 22 20 96.667 90 110 116* 0.452 93 50 89 43 10 93.333 90 100 117* 0.460 104 50.7 106 37 40 103.333 90 130 118 0.176 94 48.57 107 45 50 86.667 70 120	112	0.499	91	43.07	79	40	40	73.333	60	100
114 0.213 94 47.85 100 47 10 93.333 90 100 115 0.140 65 31.65 89 22 20 96.667 90 110 116* 0.452 93 50 89 43 10 93.333 90 100 117* 0.460 104 50.7 106 37 40 103.333 90 130 118 0.176 94 48.57 107 45 50 86.667 70 120	113	0.255	77	38.82	88	47	40	81.333	68	108
115 0.140 05 31.05 89 22 20 96.667 90 110 116* 0.452 93 50 89 43 10 93.333 90 100 117* 0.460 104 50.7 106 37 40 103.333 90 130 118 0.176 94 48.57 107 45 50 86.667 70 120	114	0.213	94	47.85	100	47	10	93.333	90	100
110 0.452 93 50 89 43 10 93.333 90 100 117* 0.460 104 50.7 106 37 40 103.333 90 130 118 0.176 94 48.57 107 45 50 86.667 70 120	115	0.140	00	31.65	89 80	22	20	90.007	90	110
117 0.400 104 30.7 100 37 40 103.333 90 130 118 0.176 94 48.57 107 45 50 86.667 70 120	110"	0.452	93 104	5U 50 7	09 106	43 27	10	33.333 102 222	90 90	100
	112	0.400	Q2	48 57	100	51 45	40 50	86 667	30 70	120

Onoh et al.; IJTDH, 23(2): 1-13, 2017; Article no.IJTDH.32392

No	AIP	WC	BMI (kg/m²)	FBS	Age (yrs)	рр	MAPB	DBP(mm/Hg)	SBP(mm/Hg)
119	0.250	118	63.16	91	37	50	106.667	90	140
120	0.497	98	46.43	74	61	40	83.333	70	110

* Respondents at Risk of Cardiometabolic Disorder; WC = Waist Circumference; FBS = Fasting Blood Sugar; DBP = Diastolic Blood Pressure; SBP = Systolic Blood Pressure; BMI= Body Mass Index; AIP = Antherogenic Index of Plasma

Parameters	23@ Risk	120@ Risk/Non- risk
WC	0.6557	0.6017
BMI (kg/m²)	0.5247	0.6511
FBS	0.4511	0.4166
Age (yrs)	0.5982	0.4987
pp	0.5310	0.4971
MABP	0.4225	0.3187
KMO	0.5275	0.5075

Table A2. [±]KMO analyses

*Kaiser-Meyer-Olkin measure of sampling adequacy

Table A3. Summary of normality test on data of cardiometabolic parameter of respondents

Cardiometabolic	Total respondents (120 No.)	Respondents at risk (23 No.)
parameters		
y = AIP	Normal Distribution	Normal Distribution
x1 = WC	Normal Distribution	Normal Distribution
x2 = BMI	Normal Distribution	Normal Distribution
x3 = FBS	Not Normal Distribution	Normal Distribution
x4 = AGE	Normal Distribution	Normal Distribution
x5 = pp	Not Normal Distribution	Normal Distribution
x6 = MABP	Normal Distribution	Not Normal Distribution
x7 = DBP	Not Normal Distribution	Not Normal Distribution
x8 = SBP	Not Normal Distribution	Normal Distribution

APPENDIX B – Model Development

Table B1. Goodness of fit statistic (Variable y) - Data set-1

	Model-1	Model-2	Model-3
-2 Log(Likelihood)	120.5392	123.0827	125.8066
R ² (Cox and Snell)	0.7311	0.6997	0.6619
R ² (Nagelkerke)	0.7322	0.7007	0.6629
AIC	168.5392	167.0827	167.8066
SBC	195.7910	192.0636	191.6520
Iterations	6	7	6

Table B2. Goodness of fit statistic (Variable y) – Data set-2

	Model-1	Model-2	Model-3
-2 Log(Likelihood)	1032.6663	1033.7875	1045.3761
R ² (Cox and Snell)	0.6883	0.6853	0.6534
R ² (Nagelkerke)	0.6883	0.6854	0.6535
AIC	1224.6663	1223.7875	1231.3761
SBC	1492.2655	1488.5992	1490.6128
Iterations	6	6	6

© 2017 Onch et al.; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Peer-review history: The peer review history for this paper can be accessed here: http://sciencedomain.org/review-history/18910