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ABSTRACT 
 

A new type of intermittency observed in an auto stochastic dynamic system with a multicomponent 
chaotic attractor consisting of several Lorentz attractors is considered. It is shown that it is caused 
by the coexistence of two types of intermittency: "chaos – chaos" and "quasiperiodic motion – 
chaos". The main statistical characteristics of this movement are also given. 
 

 
Keywords: Multiattractor; composite multiattractor; multi-component chaotic attractor; intermittency; 

chaotic motion; quasi-periodic motion; lorenz attractor. 
 

1. INTRODUCION 
 
The study of the unpredictable alternation of 
different types of motion observed in many 
physical systems is one of the important 
problems of nonlinear dynamics. This 
phenomenon is known as intermittency. It is 
associated with the coexistence of different  
types of interacting attractors in the dynamic 

system phase space and manifests itself, in 
particular, in the form of the intermittency "quasi-
regular motion-chaos" [1-4] and "chaos-chaos" 
[5-8]. 
 
The intermittency of "quasi-regular motion-
chaos" is relatively well studied concerning 
discrete maps, in particular, in the contest of 
scenarios for the origin of stochastic motion 
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processes, where strictly justified results were 
obtained [9,10]. This phenomenon is not fully 
investigated in continuous time systems. The 
dynamic systems with comparatively simple 
arranged areas of attraction, consisting of two 
attractors namely one chaotic and one regular [2-
6], were mainly investigated. Outside the 
attention of researchers remained, in     
particular, the intermittency "quasiregular 
movement - chaos" at chaotic multiattractors 
described, for example, in [11-17] ("scroll grid 
attractors" [11]) and on composite (compound) 
chaotic multiattractors [8,18-25]. The motion     
on composite chaotic multiattractors, which is 
one of the most striking examples of the 
intermittency of “chaos-chaos”, however, may 
contain regular motion intervals – during 
transitions of phase trajectories between local 
chaotic attractors [8, 18-20]. Thus, they may 
have a new type of intermittency characterised 
by the coexistence of both types of intermittency: 
“chaos-chaos” and “quasi-regular movement-
chaos”. 
 
As a rule, because of the short duration of the 
episodes of transition movements from one local 
attractor to another, the observation of the proper 
motion in such systems is difficult, resulting in 
their dynamics appears as a collection of chaotic 
fluctuations on a local attractors and chaotic 
hopping of movement from one of them to 
another. However, in some cases, a significant 
increase in the transition time is possible, 
resulting in a new type of intermittency is quite 
clear. 
 

2. INTERMITTENCY “QUASIREGULAR 
MOTION - CHAOS” IN THE DYNAMIC 
SYSTEM WITH MULTIPLE LORENZ 
ATTRACTORS 

 

For example, consider the following dynamic 
system with the amounts of the composite 
chaotic multiattractor consisting of attractors of 
Lorenz [8]: 
 

  

   

  



















.CzxxyxH
d

dz

;xyxHzBx
d

dy

;xxyxHA
d

dx










                         (1) 
 

Where, 
 

   

    ,
d

h

d

h
h1n2sP

d

h

d

h
h1m2sP

d

h
hsP

d

h
hsP1dH

N

0n

M

0m 





























































































 (2) 

  








d

h

d

h

2

1
P 

, 
 

– replicates (reduplicate) operator creates copies 
of the attractor of the original dynamical system, 
ordered by coordinate =x+y, where  is a real 
constant, and their merger into a single 
multiattractor. It represents a nonlinear function 
consisting of 1+M+N line segments of unit slope, 
connected by more steep intermediate segments 
with slope -d. 
 
The number of local attractors in the 
multiattractor of system (1), (2) is equal to the 
number of line sections with a single slope. Each 
of them is inside its region of phase space 
(phase cell), with a length of 2h in the coordinate 
. The constant s accounts for the asymmetry of 
the local attractors relative to the centre of your 
cell. The coefficient d determines the width of the 
transition layer the phase space between 
adjacent cells (equal to 2h/d) [8]. 
 

Let A=10.5, B=33.2189, C=3/8, M=1, N=0, h=22, 
d=10, s=0. In this case, the replicate operator is 
a nonlinear function of the variable  containing 
two line segments with unit slope, connected by 
an intermediate segment with a slope -d (Fig.1), 
and the system (1) has the simplest composition 
multiattractor containing two local chaotic 
attractors (Fig. 2). 
 

Let us consider the evolution of such 
multiattractor when we change the value of 
constants. When  < -0.2, transitions of the 
phase point between the local attractors occur 
along short smooth segments (Fig. 2a). In the 
result, the phases of regular movement look like 
a fast direct transition of the phase point from 
one of the local chaotic attractor on the other. 
 

However, if the value of this parameter is 
increased to -0.15 phase trajectories begin to 
twist around the unstable cycle, which owes its 
existence to nonlinearity of the replicate function. 
First, when  -0.15, trajectories manage to do a 
maximum of one turn before it gets into the 
region of attraction of one of the local attractors 
and is attracted to it (Fig. 2b). 
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Fig. 1. Replication operator at M=1, N=0 

 
 

 
 

 
 
With the increase of this coefficient the maximum 
number of turns of the trajectories increases, 
accordingly, increases the average time of 
regular motion in the neighbourhood of this cycle. 
In the timing diagram long sections of 
quasiperiodic oscillations appear (Fig.3). When  

 -0.1 cycle becomes stable. Now the phase 
trajectory, once finding itself in the region of its 
attraction cannot leave. That is, the case   -0.1  
corresponds to the global metastability of the 
system (1), (2). A movement, which begun on 
any of the local chaotic attractors, through the 
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Fig. 2b Example of the transition movement in the system (1), 
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end time, will always reach a stable cycle 
corresponding to regular oscillations. 
 

Thus, in the interval of values of the coefficient   
from about -0.15 to -0.1 for the chosen values of 
the other constants, the system (1) and (2) show 
a typical example of intermittent dynamics. If the 
value of  is close to -0.1 long laminar phases of 
motion is observed, during which the number of 
revolutions of the phase trajectory around the 
unstable cycle can be very large (Fig. 3). 
 

The same behavior of the system (1), (2) is 
observed in the General case of an arbitrary 
number of local attractors in the composition of 
multiattractor [8]. 
 

3. STATISTICAL CHARACTERISTICS 
 

Random variables that can be investigated by 
statistical methods to description of the 
phenomenon of intermittency in dynamical 
systems that have multiple chaotic multiattractor 
are the duration of individual episodes of motion 
on the chaotic attractors and in the vicinity of the 
regular attractors, part of multiattractor. 
 

In the present case, the most important are the 
dependence of the relative total time of the 

regular movements of the value of the constant  
and frequency distribution of durations of regular 
and chaotic motions. 
 
The relative total duration of regular motion is 

equal to 






T

T

to i
ireg

T
reg lim

, where T  – total 
time of observation, Treg i   – duration of the i-th 
episode of a regular movement. 
 
The frequency distribution, in this case, 
represents the relationship "the number of 
episodes of movement on the selected attractor 
– the duration of these episodes" for the 
observation time T  at T . 
 
The dependence toreg () for three values of the 
slope of the intermediate segment of the 
replicate function (d=10, d=100, d=) is shown in 
Fig.4. A characteristic feature of this dependence 
is the existence of the limit of the maximum value 
of toreg when d<. For example, for d=10 and 
d=100 the percentage of time consumed on a 
regular traffic may not exceed approximately 
0.55. In the case of discontinuous replicate 
function, the upper limit of toreg is equal to 1. 
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Note that these dependences are satisfactorily 
approximated by functions of the form 
 

  





regto

,                                  (3) 
 
where – , , ,  –  are positive constants 
 
For the dependence corresponding to d=10 
(Fig.4), these constants have the following 
values: =1.6 .10-8, =0.1005, =0.45, =6. For 
the dependence corresponding to d=100, these 
constants have the following values: =3 .10

-6
, 

=0.0993, =0.35, =4. For the dependence 
corresponding to d= , they are equal =1.5 .10

-

4
, =0.09975, =0.6, =1.8. 

 
Frequency distribution of durations of episodes of 
motion on the chaotic attractors is shown in 
Fig.5. They show that the duration of motion on 
the chaotic attractors are concentrated within a 
limited interval within which appreciable 
secondary concentration with equidistant each 
other the highs. The values of the maximums are 
approximately uniformly distributed throughout 
the interval. The equality of intervals between the 
peaks is due to the fact that the visit of the phase 
point of the intersection area of the chaotic 

attractor with the boundary of its phase cell is 
mostly quasi-periodic character. Any pronounced 
dependence of these distributions from   not 
observed. 
 
Fig.6 shows the frequency distribution of 
durations of episodes of regular motion, including 
at least one rotation of the trajectory around the 
unstable cycle, with =-0.1009, -0.109 and -
0.125, which, according to Fig.4, corresponding 
to values of relative total duration of regular 
movement toрег approximately equal to 0.55, 0.1 
and 0.03. It is seen that these distributions have 
an exponential character. That is, the duration of 
episodes of regular movement, in general, are 
concentrated near the minimum value, which is 
equal to time of one rotation of the phase 
trajectory around the unstable cycle (turn90). 
Also, it is seen that the distributions consist of 
significantly more highly expressed, compared to 
the distributions in Fig.6, the individual 
concentrations, separated by equal intervals of 
turn /2, which is a direct consequence of the 
quasi-periodic nature of the regular movement. 
(The fact that neighbouring maxima separated by 
intervals of length exactly turn /2, because for 
every revolution, the trajectory passes through 
the vicinity of two areas of contact of regular 
manifolds with chaotic attractors). 

Fig. 4. The dependence of the relative total time to the regular 
movements of the value of the constants  at d=10 (� - numerical data, 
dashed line – approximation by function (3)), d=100 (x - numerical data, 
small dashed line – approximation by function (3)), d= (o - numerical 

data, solid line – approximation by function (3)). 0 – limit constant value 
, above which the regular oscillations become stable (for d=10 0 -

0.10088, for d=100 0 -0.09966, for d= 0 -0.1002) 

 

Трег/Т 
1 

10
-1

 

10
-2

 

0- 

10
-2

 10
-4

 10
-6

 1 



 
 
 
 

Prokopenko; PSIJ, 18(4): 1-9, 2018; Article no.PSIJ.42359 
 
 

 
6 
 

 

 
 

 
 

 
Fig. 6a. Frequency distribution of the duration of regular motion episodes at μ=-0.1009 

 

 
Fig. 6b. Frequency distribution of the duration of regular motion episodes at μ=-0.109 
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Fig. 6c. Frequency distribution of the duration of regular motion episodes at μ=-0.125. 

A comparison of these distributions 
corresponding to different values of the constant 
, shows their strong dependence on toreg. With 
the reduction in relative overall duration of 
regular motion, the distribution of the lengths of 
its intervals is substantially compressed by the 
ordinate. From Fig.6 it can be seen that when  
changes from -0.1009 to -0.125 (in this case toreg 
is reduced from 0.55 to 0.03 – see Fig.5) 
maximum observed length of intervals of regular 
motion is reduced four times – i.e. from 4000 to 
1000. 
 

4. THE MECHANISM OF INTERMITTENCY 
 

The reason for the alternation between chaotic 
and laminar phases of the movement in the 
system (1), (2) is the coexistence of interacting 
attractors of two types (i.e. chaotic and regular) 
that are in a metastable state, and having such a 
mutual position that the phase trajectory, leaving 
the attractor of the same type always appears in 
the region of attraction of the attractor of another 
type. 
 

Metastability of regular motion due to instability 
of the corresponding limit cycle. Metastability of 
the local chaotic attractors induced by the choice 
of size of the containing cell of the phase space, 
so that each of them had crossed the boundaries 
of its cell, causing the phase trajectory gets the 
opportunity to leave a local attractor through the 
area of its intersection with the border of the cell 
[8,18-20]. 
 

Therefore, the mechanism for intermittent 
oscillations in dynamic systems that have 
composite chaotic multiattractors, can be 
described as follows. 
 

For example, the initial conditions are chosen in 
the domain of attraction of one of the local 

chaotic attractors. Then, the phase point coming 
on this attractor will have some time to make 
chaotic motion on it, until it leaves it through the 
intersection with the boundary of the phase cell. 
Getting off a chaotic attractor it gets into the 
region of attraction of the unstable limit cycle and 
starts a quasi-periodic motion in its surroundings. 
Because of the instability cycle, the magnitude of 
the momentum of the phase trajectory around it 
over time begins to grow (Fig. 3b) with 
simultaneous displacement of the region of 
rotation of the phase trajectories at the unstable 
manifold – until the phase trajectory crosses the 
border of the region of attraction of one of the 
local attractors and be attracted to it. Further, the 
movement continues on a chaotic attractor, while 
the phase trajectory will go beyond the 
boundaries of the containing its cell of the phase 
space and does into the region of attraction of 
the cycle, and again started to make momentum 
around it. The result is a typical pattern of 
intermittency "quasi-periodic motion – chaos" 
(Fig.3). 
 

5. CONCLUSION 
 
Thus, in a homogeneous multiattractor system 
based on the Lorenz attractors, it is possible to 
observe a new type of intermittency, 
characterized by the coexistence of two types of 
intermittency – intermittency of “chaos – chaos” 
and intermittency “quasiregular movement – 
chaos.” The manifestation and nature of 
intermittency “quasiregular traffic – chaos” are 
controlled by way of the introduction of the 
replicate operator in the Lorenz equations. That 
is, a set of those variables (replication variables 
[19]) relative to which it is set. 
 
From the conducted consideration it is seen that 
depending on the choice of the replication 
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variable (in the case under consideration, the 
modification of this variable is carried out by 
changing the coefficient ), the alternation of 
chaotic and quasi-regular behaviour of the 
system can be very clearly manifested. 
Therefore, the dynamic systems of the 
considered type can serve as a very convenient 
model for demonstrating and more detailed study 
of such, in many ways still mysterious 
phenomenon of dynamics as intermittency. 
 
In the context of the material of this article, it is 
advisable to further investigate, for example, the 
dependence of the properties of the 
phenomenon under consideration on the regime 
of chaotic oscillations on local chaotic attractors, 
on the parameters of the replicating function, as 
well as on the modification of the replication 
variable within a wider range. 
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