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ABSTRACT 
 

Breast cancer is the most common diagnosed cancer and the leading cause of related death in 
woman across the world. Nowadays, there are many effective chemotherapeutic agents used in the 
treatment of breast cancer, however due to the high side effects of these drugs, there is still an 
urgent need to develop new drugs for battle the disease. Computational chemistry is unique 
method in drug discovery which reduce cost. In this study 105 molecules were subjected to 
quantitative structure-activity relationship analysis to find the structure requirements for ligand 
binding. Then their structures were drowning in Hyperchem and also optimized, the structural 
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invariants used in this study were those obtained from whole molecular structures: by both 
hyperchem and dragon. Four chemometrics method including MLR, FA-MLR, PCR and GA-PLS 
were employed to make connection between structural parameters and cytotoxic effects. GA-PLS 
showed Chemical, Topological, Randic molecular, Charge, 3D-Morse, Functional, Atom-
centeredindices to be the most significant parameters on cytotoxic activity. The result of FA-MLR 
analysis revealed the effects of Chemical, Atom-centered, Galvez and Functional on the cytotoxic 
activity too. A comparison between the different statistical methods employed indicated that GA-
PLS represented superior results and it could explain and predict 72% and 80% variances in the 
PIC50 data, respectively. 
 

 
Keywords: Breast cancer; isatin; MCF-7; QSAR; GA-PLS. 
 

1. INTRODUCTION 
 
Cancer is a diseases involving abnormal cell 
growth with the possible to invade or extent to 
other parts of the body.  A report from the 
American Cancer Society showed in the United 
States, 15.5 million people with a history 
of cancer were living. 
 
Each year, more than 40,000 people in different 
country receive a diagnosis of one of the types of 
cancer: for example breast, bladder, colon and 
rectal, endometrial, kidney and so on [1-3]. One 
of the best promising new of heterocyclic 
molecules having many interesting activity 
profiles are isatin and isatin derivatives. The 
isatin (1H-indole-2,3-dione) moiety is responsible 
for a wide spectrum of biological property such 
as  anticancer, antibacterial, antifungal and 
antiviral in many synthetically versatile molecules 
[4–8]. Among these properties antineoplastic 
activities (breast cancer against MCF7) of this 
moiety was of our interest to study the 
quantitative structure-activity relationships of a 
series of 105 isatin derivatives reported in 
literature. Today the application of computational 
methods for designing newly biologically active 
compounds has opened a new window to 
modern drug discovery research. Computational 
methods can accelerate the procedure of 
discovering new drugs by designing new 
compounds and predicting potency or activity of 
them. Quantitative structure activity relationship 
(QSAR) studies provide pharmaceutical chemists 
valuable information that is useful for drug design 
and prediction of drug activity [9-13]. QSAR 
studies, as one of the most important areas in 
chemometrics, give information that is useful for 
molecular design and medicinal chemistry [4-8]. 
QSAR models are mathematical equations 
constructing a relationship between chemical 
scaffold and biological property. These models 
have another ability, which is providing a deeper 
knowledge about molecule design.  

Linear QSAR models are mathematical 
equations that present us enough information 
about the mechanism of biological activity of 
compounds by constructing a relationship 
between chemical structures and biological 
activities. The most important step in building 
QSAR models is the appropriate representation 
of the structural and physicochemical features of 
chemical structures [14-17]. These features 
named molecular descriptors have high impact 
on the biological activity of compound [18-21]. 
Molecular descriptors have been classified into 
different categories such as physiochemical, 
constitutional, geometrical, topological, and 
quantum chemical descriptors. Dragon and 
hyperchem are two well-known computational 
softwares provide us more than 4000 of these 
descriptors [22,23].   
 
Different QSAR methods including multiple linear 
regression (MLR), partial least squares combined 
with genetic algorithm for variable selection (GA-
PLS), factor analysis–MLR (FA-MLR), principal 
component regression analysis (PCR) were used 
to make connections between structural 
descriptors and anti-cancer activity of 
compounds [24-27]. An important approach of 
the researchers in modification of the isatin 
moiety has been to establish a comprehensive 
structure–activity relationship (SAR), for this 
class of anti-cancer agents.  
 
It has been shown that the introduction of 
electron-withdrawing halogens to the benzene 
ring of the isatin molecule showed with increased 
biological activity [28]. The in vitro cytotoxic 
property of isatin bromo-derivatives were 
determined against the human monocyte-like, 
histiocytic lymphoma cell line (U937), appeared 
that the introduction of electronwithdrawing 
groups at positions C5, C6, and C7 significantly 
increased the cytotoxic activity when compared 
with isatin molecules, but the substitution at the 
5-position being the best [29]. Substitution such 
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as an aromatic ring with one or three carbon 
atom linker at N1 enhances the activity too [30]. 
In this paper, it was of interest for us to 
investigate the QSAR of isatin derivatives that 
have been reported to exhibit anti-cancer activity 
against MCF7 in recent reports. Our QSAR 
analysis establishes mathematical relationship 
between biological activities and computable 
parameters such as chemical, topological, 
physicochemical, stereochemical or geometrical 
and so on indices. 
 

2. METHODS 
 

2.1 Data Set 
 

The biological data used in this study were anti-
cancer activity against MCF7, (in terms of -log 
IC50), of a set of 105 isatin derivatives [31-36]. 
The data set was classified into calibration and 
prediction set by kenardston algorithm of the 25 
prediction molecules from the spaces of the 
calculated descriptors. The structural features 
and biological activity of these compounds are 
listed in Table 1. Calculated descriptors for each 
molecule are summarized in Table 2. 
 

2.2 Descriptor Generation 
 

The structural features of the studied compounds 
are listed in Table 1. The two-dimensional 
structures of molecules were drawn by 
Hyperchem 8.0 software (Hypercube Inc.) to 
calculate whole molecular structure-based 
descriptors. The final geometries were obtained 
with semi-empirical AM1 calculations in 
Hyperchem program. The molecular structures 
were optimized using the Polak-Ribiere algorithm 
until the root mean square gradient was 0.01 kcal 
mol

-1
 [22]. Some physicochemical parameters 

including molecular volume (V), molecular 
surface area (SA), hydrophobicity (Log P), 
hydration energy (HE) and molecular 
polarizability (MP) were calculated using 
Hyperchem Software. In order to calculate some 
molecular descriptors including topological, 
constitutional and functional group descriptors 
the optimized molecules were transferred into the 
Dragon package, developed by the Milano 
chemometrics and QSAR Group [23]. The 
calculated descriptors from whole molecular 
structures are briefly described in Table 2. 
 

2.3 Data Screening and Model Building 
 

The selected descriptors from each class and the 
experimental data were analyzed by the stepwise 

regression SPSS (version 22.0) software. The 
calculated descriptors were collected in a data 
matrix whose number of rows and columns were 
the number of molecules and descriptors, 
respectively. Multiple linear regressions (MLR) 
and partial least squares (PLS) were used to 
derive the QSAR equations and feature selection 
was performed by the use of genetic algorithm 
(GA). MLR with factor analysis as the data pre-
processing step for variable selection (FA-MLR) 
and principal component regression analysis 
(PCRA) methods were also used to derive the 
QSAR equations. 
 
The resulted models were validated by leave-one 
out cross-validation procedure (using MATLAB 
software) to check their predictability and 
robustness.  
 
A key step in QSAR modeling is evaluating 
model’s stability and prediction ability. We used 
cross-validation and external test set for these 
proposes. Cross-validation has different variants 
such as leave-one-out (LOO), leave-group-out 
(LGO) and -fold. It was shown previously that 
LOO can leads to chance and overfitted models 
whereas LGO is more sensitive to chance 
variables [37]. Therefore, we used LGO for 
model-validation utilizing correlation coefficient 
and root mean square error of cross-validation 
(q2 and RMSECV, respectively) as scoring 
function. In addition, an external test set 
composed of 6 molecules was also used. The 
molecules in this set did not have contribution in 
the model step and thus their predicted values 
can give a final prediction power of the models 
as measured by correlation coefficient, root 
mean square errors of prediction, relative error of 
prediction (R

2
P, RMSEP and REP, respectively). 

 
The PLS regression method used in this study 
was the NIPALS-based algorithm existed in the 
chemometrics toolbox of MATLAB software 
(version 12 Math work Inc.). Leave-one-out 
cross-validation procedure was used to obtain 
the optimum number of factors based on the 
Haaland and Thomas F-ratio criterion [38]. 
 
3. RESULTS AND DISCUSSION 
 
3.1 MLR Analysis 
 
In the first step, separate stepwise selection-
based MLR analyses were performed using 
different types of descriptors, and then, an MLR 
equation was obtained utilizing the pool of all 
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calculated descriptors. The resulted QSAR 
models from different types of descriptors for the 
compounds (80 molecules as calibration and 25 
molecules as prediction sets) are listed in     
Table 3.  
 
The equation E1 of Table 3 shows among 
chemical descriptors, the positive effect of 
surface area of the molecules on cytotoxicity 
effect and it shows the positive effect of log p of 
the molecules on the activity. This equation 
shows the hydrophilic molecules shows better 
cytotoxic effect. The second equation of Table 3 
demonstrated the effect of constitutional 
descriptors on the anti-cancer activity of these 
compounds. It explain the positive effect of nR05 
(number of 5-membered rings), and nR09 
(number of 9-membered rings). It also explain 
the negative effect of ns( number of sulfur) on the 
activity.  
 
The effect of topological group counts parameter 
on anti-cancer activity of the studied compounds 
has been described by equation E3 of Table 3. It 
shows that among topological DDr05, PJI2 (2D 
Petitjean shape index) and X3A (average 
connectivity index of order 3) have the positive 
effects on cytotoxic activity of the compounds.  
 
The equation E4 of Table 3 was found by using 
geometrical descriptors (E4), which studied 
explains the positive effect of DDI index and 
negative effect of G1 compounds on the anti-
cancer activity. 
 
The equation E5 of Table 3 shows the effect of 
functional group on anti-cancer activity. It 
explains the positive effect of nN-N (number of 
hydrazine derivatives) and nCar (number of 
aromatic C (sp2) on the activity. 

  
The equation E6-E17 of Table 3 demonstrated the 
effect of positive and negative effects of BCUT, 
Galvz topological Charge indices, 2D 
autocorrelations, Charge, Burden eigenvalues, 
RDF, 3D MoRSE, WHIM, GETAWAY and charge 
descriptors on the anti-cancer activity of these 
compounds.  

 
The statistical parameters of prediction, listed in 
Table 4, indicate the suitability of the proposed 
QSAR model based on MLR analysis of 
molecular descriptors. The correlation coefficient 
of prediction is 0.65, which means that the 
resulted QSAR model could predict 59% of 
variances in the anti-cancer activity data. It has 
root mean square error of 0.23.  

3.2 GA-PLS Model 
 
Multicolinearity is a real problem in MLR 
analysis. This problem in the descriptors is 
omitted by PLS analysis. In fact, in PLS analysis, 
the descriptors data matrix is decomposed to 
orthogonal matrices with an inner relationship 
between the dependent and independent 
variables. This modeling method coincides with 
noisy data better than MLR, because a minimal 
number of latent variables are used for modeling 
in PLS. In GA-PLS analysis a variable selection 
method is used to find the more convenient set of 
descriptors because redundant variables 
degrade the performance of PLS analysis, similar 
to other regression methods. In the present 
study, GA was used as variable selection 
method. The data set (n = 105) was divided into 
two groups: calibration set (n = 80) and 
prediction set (n = 25). Given 80 calibration 
samples; cross-validation procedure was used to 
find the optimum number of latent variables for 
each PLS model. In this work, in each run of GA-
PLS method a large number of acceptable 
models were created. GA produces a population 
of acceptable models in each run. In this work, 
many different GA-PLS runs were conducted 
using different initial set of populations (50-250) 
and therefore a large number of acceptable 
models were created. The most convenient GA-
PLS model that resulted in the best fitness 
contained 10 descriptors including, Chemical, 
Topological, Randic molecular, Charge, 3D-
Morse, Functional, Atom-centered. All of them 
being those obtained by different MLR-based 
QSAR models. The PLS estimate of the 
regression coefficients are shown in Fig. 1.   
 
This model not only has a high cross-validation 
statistics, but also represents a high ability for 
modeling external test samples. It could explain 
and predict about 72% of variances in the anti-
cancer activity of the studied molecules. There is 
a close agreement between the experimental 
and predicted values of anti-cancer activity data. 
 
To measure the significance of the 10 selected 
PLS descriptors in anti-cancer activity; In order to 
investigate the relative importance of the variable 
appeared in the final model obtained by GA-PLS 
method, variable important in projection (VIP) 
was employed [39]. VIP values reflect the 
importance of terms in PLS model. According to 
Erikson et al. X-variables (predictor variables) 
could be classified according to their relevance in 
explaining y (predicted variable), so that VIP > 
1.0 and VIP < 0.8 mean highly or less influential, 
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respectively, and 0.8 < VIP< 1.0 means 
moderately influential. The VIP analysis of PLS 
equation is shown in Fig. 2. As it is observed, 
PJI2, JGI3 and PHP2 indices represent the most 

significant contribution in the resulted QSAR 
model. In addition, functional group parameters 
such as mor17v and mor18u have been found to 
be moderately influential parameters. 

 
Table1. Chemical structure of isatin derivatives used in this study 

 

N

R

O

O

N
R1

R2

1-15

N

N

R2

R1

O

N

N

S CH3

R

16-30  
 

Compound R R1 , R2 pIC50 
1 H (CH3)2 4.39 
2 H (CH2CH3)2 4.36 
3 H (C6H5)2 4.62 
4 H Piperidinyl 4.38 
5 H Morpholinyl 4.28 
6 Cl (CH3)2 4.06 
7 Cl (CH2CH3)2 4.47 
8 Cl (C6H5)2 4.53 
9 Cl Piperidinyl 4.29 
10 Cl Morpholinyl 4.53 
11 Br (CH3)2 4.24 
12 Br (CH2CH3)2 4.69 
13 Br (C6H5)2 3.96 
14 Br Piperidinyl 4.50 
15 Br Morpholinyl 4.18 
16 H (CH3)2 4.53 
17 H (CH2CH3)2 4.13 
18 H (C6H5)2 4.41 
19 H Piperidinyl 4.42 
20 H Morpholinyl 4.84 
21 Cl (CH3)2 4.68 
22 Cl (CH2CH3)2 4.72 
23 Cl (C6H5)2 4.61 
24 Cl Piperidinyl 4.51 
25 Cl Morpholinyl 4.67 
26 Br (CH3)2 4.75 
27 Br (CH2CH3)2 4.52 
28 Br (C6H5)2 4.52 
29 Br Piperidinyl 4.41 
30 Br Morpholinyl 4.92 

 

N

N

N

N

R

OO

X

31-40

N

N

N

N

NO

X

H
N

S

NH2

41-50

R

N
H

R

O

N N
H

NH2

S

51-55  
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Compound X R PIC50 

31 Cl 4-Cl 4.41 

32 Cl 4-Br 4.82 

33 Cl 6-Cl 4.58 

34 Cl 6-Br 4.75 

35 Cl H 4.32 

36 CF3 4-Cl 4.77 

37 CF3 4-Br 4.18 

38 CF3 6-Cl 4.80 

39 CF3 6-Br 4.55 

40 CF3 H 4.47 

41 Cl 4-Cl 4.24 

42 Cl 4-Br 4.33 

43 Cl 6-Cl 4.65 

44 Cl 6-Br 4.94 

45 Cl H 4.64 

46 CF3 4-Cl 4.67 

47 CF3 4-Br 4.30 

48 CF3 6-Cl 4.61 

49 CF3 6-Br 4.45 

50 CF3 H 4.86 

51 - 4-Cl 4.52 

52 - 4-Br 4.83 

53 - 6-Cl 4.76 

54 - 6-Br 4.75 

55 - H 4.43 

 

N
H

O

O

R

56-65

N
H

O

O

R

Cl

66-68

N
H

O

O

R

69  
 

Compound R PIC50 

56 H 5.37 

57 4-F 5.25 

58 4-Cl 5.09 

59 4-Br 4.98 

60 4-NO2 5.02 

61 3-NO2 5.11 

62 4-OCH3 5.09 

63 2-OCH3 5.17 

64 3,4-OCH3 5.20 

65 4-CH3 5.09 

66 H 5.08 

67 4-F 5.27 

68 3,4-OCH3 5.44 

69 H 5.20 



R

Compound R 
70 H 

71 H 

72 H 

73 H 

74 H 

75 H 

76 H 

77 H 

78 H 

79 H 

80 H 

 

R1

8

 
Compound R1 
81 6-OCH3 
82 6-OCH3 
83 6-H 
84 6-H 
85 6-OH 
86 6-OH 
87 - 
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N

N

N

S

O

N

R2

R1

70-74

N

N

N

N
H

O

N

R2

R1

R

75-80  
 

R1 , R2 pIC50 

 

7.22 

 
7.32 

 

7.42 

 

7.29 

 

7.37 

 
7.46 

 

7.60 

 

7.19 

 

7.58 

 

7.37 

 

7.65 

N
H

O

R2

81-86

N
H

O

OCH3H3CO

H3CO

H3CO

87  

R2 pIC50 
3’-OH 6.41 
4’-OH 6.64 
3’-OH 4.50 
4’-OH 4.59 
3’-OH 5.07 
4’-OH 4.71 
- 9.15 
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N

O

R3

R2 R1

R6R5

R4

88-105 

Compound R1 R2 R3 R4 R5 R6 pIC50 
88 O H H H H H 3.25 
89 O Br H H H H 3.67 
90 O H Br H H H 4.18 
91 O H H Br H H 4.13 
92 O H H H Br H 4.08 
93 O H F H H H 4.01 
94  O H I H H H 4.27 
95 O H NO2 H H H 3.88 
96 O H OCH3 H H H 3.38 
97 O H Br H Br H 4.98 
98 O H Br Br H H 4.94 
99 O H I H I H 5.11 
100 O H Br H NO2 H 3.59 
101 O H NO2 Br H H 4.77 
102 O H Br Br Br H 5.17 
103 N–C6H5 H H H H H 4.17 
104 N–C6H5 H Br H Br H 4.86 
105 O H H H H CH3 3.62 

 

 
 

 
Fig.1. PLS regression coefficients for the variables used in GA-PLS model 
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Fig. 2. Plot of Variables Important in Projection (VIP) for the descriptors used in GA-PLS model 

 
3.3 FA-MLR and PCRA 
 

FA-MLR was performed on the dataset. Factor 
analysis (FA) was used to reduce the number of 
variables and to detect structure in the 
relationships between them. This data-
processing step is applied to identify the 
important predictor variables and to avoid 
collinearities among them [40]. Principle 
component regression analysis, PCRA, was tried 
for the dataset along with FA-MLR. With PCRA 
collinearities among X variables are not a 
disturbing factor and the number of variables 
included in the analysis may exceed the number 
of observations [41]. In this method, factor 
scores, as obtained from FA, are used as the 
predictor variables [40]. In PCRA, all     
descriptors are assumed to be important while 
the aim of factor analysis is to identify relevant 
descriptors. 
 
Table 5 shows the four factor loadings of the 
variables (after VARIMAX rotation) for the 
compounds tested for cytotoxic activity. As it is 
observed, about 73% of variances in the original 
data matrix could be explained by the selected 
seven factors.  
 
Based on the procedure explained in the 
experimental section, the following three-
parametric equation was derived (Table 6). 
 

Y=4.229 (±0.636)+0.006(±0.001) SA+ 0.061 
(±0.018) H0470.607 (±0.10) C02818.706 
(±5.057) JGI30.731(±0.275) nNN R

2
= 0.66, Q

2
= 

0.61, F=21.73, SE= 0.19. 
 
This equation could explain about 66% of the 
variance and predict 61% of the variance in pIC50 
data. It has a root mean square error of 0.19. 
This equation describes the effect of SA, H047, 
C028, JGI3 and nNN on cytotoxic activity of the 
studied molecules. 
 

When factor scores were used as the predictor 
parameters in a multiple regression equation 
using forward selection method (PCRA), the 
following equation was obtained in Table 7. 
 
Y=5.026 (±0.96) + 0.508 (±.097) F1+ 0.250 
(±0.097) F20.211(±0.097) F3 R

2
=0.77, Q

2
=0.72, 

F=12.97, SE=0.23. 
 
This equation could explain and predict 77% and 
72% of the variances in pIC50 data, respectively. 
The root mean square error of PCRA analysis 
was 0.23. Since factor scores are used instead of 
selected descriptors, and any factor-score 
contains information from different descriptors, 
loss of information is thus avoided and the quality 
of PCRA equation is better than those derived 
from FA-MLR. Whilst the data of this analysis 
show acceptable prediction, we see that the 
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predicted values of some molecules are near to 
each other.   
 
As it is observed from Table 5, in the case of 
each factor, the loading values for some 
descriptors are much higher than those of the 
others. These high values for each factor indicate 
that this factor contains higher information about 
which descriptors. It should be noted that all 
factors have information from all descriptors but 

the contribution of descriptor in different factors 
are not equal. For example, factors 1 and 2 have 
higher loadings for the chemical, constitutional, 
Functional, Atom-center, BCUT Information, 
geometrical, Walk and path counts and 2D 
autocorrelations indices whereas information 
about the Connectivity indices, 3D WHIM,  
MoRSE descriptors and Functional        
descriptors are highly incorporated in factor 3 
descriptors. 

   
Table 2. Brief description of some descriptors used in this study 

 

Descriptor type Molecular description 

Chemical LogP (Octanol-water partition coefficient), Hydration Energy (HE), 
Polarizability (Pol), Molar refractivity (MR), Molecular volume (V), Molecular 
surface area (SA). 

Constitutional mean atomic vander Waals volume (MV), no. of atoms, no. of non-H atoms, 
no. of bonds, no. of heteroatoms, no. of multiple bonds (nBM), no. of aromatic 
bonds, no. of functional groups (hydroxyl, amine, aldehyde, carbonyl, nitro, 
nitroso, etc.), no. of rings, no. of circuits, no of H-bond donors, no of H-bond 
acceptors, no. of Nitrogen atoms (NN), chemical composition, sum of Kier-
Hall electrotopological states (Ss), mean atomic polarizability (Mp), number of 
rotable bonds (RBN), mean atomic Sanderson electronegativity (Me), number 
of Chlorine atoms (NCl), number of 9-membered rings (NR09), etc. 

Topological Molecular size index, molecular connectivity indices (X1A, X4A, X2v, X1Av, 
X2Av, X3Av, X4Av), information content index (IC), Sum of topological 
distances between F..F (T(F..F)), Ratio of multiple path count to path counts 
(PCR), Mean information content vertex degree magnitude (IVDM), 
Eigenvalue sum of Z weighted distance matrix (SEigZ), reciprocal hyper-
detour index (Rww), Eigenvalue coefficient sum from adjacency matrix 
(VEA1), radial centric information index, 2D petijean shape index (PJI2), 
mean information index on atomic composition(AAC), Kier symmetry 
index(S0K), mean information content on the distance degree equality (IDDE), 
structural information content (neighborhood symmetry of 3-order) (SIC3), 
Randic-type eigenvector-based index from adjacency matrix (VRA1), sum of 
topological distances between N..N (T(N..N)), sum of topological distances 
between O..O(T(O..O)),etc. 

Geometrical 3D-Balaban index (J3D), span R (SPAN), length-to-breadth ratio by WHIM 
(L/BW), sum of geometrical distances between N..N (G(N..N)), sum of 
geometrical distances between N..O (G(N..O)), sum of geometrical distances 
between O..O (G(O..O)), ect. 

Mol -Walk molecular walk count of order 08 (MWC08), self-returning walk count of order 
05 (SRW05), total walk count (TWC), etc. 

Burden matrix highest eigenvalue n. 1 of Burden matrix / weighted by atomic masses 
(BEHM1), highest eigenvalue n. 7 of Burden matrix / weighted by atomic 
masses (BEHM7), lowest eigenvalue n. 1 of Burden matrix / weighted by 
atomic masses (BELM1), highest eigenvalue n. 1 of Burden matrix / weighted 
by atomic van der Waals volumes (BELV1), highest eigenvalue n. 2 of Burden 
matrix / weighted by atomic Sanderson electronegativities (BEHE2), etc. 

Galvez topological charge index of order 1 (GGI1), topological charge index of order 6 
(GGI6),topological charge index of order 7 (GGI7), global topological charge 
index (JGT), etc. 

2D 

autocorrelation 

Broto-Moreau autocorrelation of a topological structure - lag 7 / weighted by 
atomic Sanderson electronegativities (ATS7E), Moran autocorrelation -lag 4 / 
weighted by atomic Sanderson electronegativities (MATS4E), Broto-Moreau 
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Descriptor type Molecular description 
autocorrelation of a topological structure - lag 3 / weighted by atomic 
Sanderson electronegativities (ATS3E), Broto-Moreau autocorrelation of a 
topological structure - lag 3 / weighted by atomic van der Waals volumes 
(ATS3V), etc. 

Charge maximum positive charge (QPOS), partial charge weighted topological 
electronic charge (PCWTE), etc. 

Aromaticity HOMA Harmonic Oscillator Model of Aromaticity index,RCI;Jug RC index 
aromaticity indices,HOMT;HOMA total (trial) , etc. 

Randic DP0;molecular profile, SP0;shape profile; SHP;average shape profile index , 
etc. 

RDF Radial Distribution Function - 7.0 / unweighted(RDF070U),Radial Distribution 
Function - 13.5 / unweighted(RDF135U),Radial Distribution Function - 1.0 / 
weighted by atomic masses(RDF010M),Radial Distribution Function - 3.0 / 
weighted by atomic masses(RDF030M),Radial Distribution Function - 4.5 / 
weighted by atomic masses(RDF045M),Radial Distribution Function - 12.5 / 
weighted by atomic masses(RFD125M),Radial Distribution Function - 2.0 / 
weighted by atomic van der Waals volumes(RDF020V),Radial Distribution 
Function - 8.5 / weighted by atomic van der Waals volumes(RDF085V),Radial 
Distribution Function - 1.0 / weighted by atomic Sanderson 
electronegativities(RDF010E), etc. 

3D-MoRSE 3D-MoRSE - signal 01 / unweighted (MOR01U)(01U,02U,…,32U), 3D-
MoRSE - signal 01 / weighted by atomic van der Waals volumes (MOR01V)( 
01V,02V,…,32V), ect. 

WHIM 1st component symmetry directional WHIM index / weighted by atomic 
polarizabilities (G1P), 2st component symmetry directional WHIM index / 
weighted by atomic electrotopological states (G2S), D total accessibility index 
/ weighted by atomic van der Waals volumes (DV), etc. 

GETAWAY H autocorrelation of lag 1 / lag2/ lag3 weighted by atomic Sanderson 
electronegativities (H1E,H2E,H3E), total information content on the leverage 
equality (ITH), R maximal autocorrelation of lag 3 / lag4 unweighted 
(R3U+,R4U+), R maximal autocorrelation of lag 6 / weighted by atomic 
masses (R6M+), R maximal autocorrelation of lag 5 / weighted by atomic van 
der Waals volumes (R5V+), R maximal autocorrelation of lag 1 / lag 4 
weighted by atomic Sanderson electronegativities (R1E+), R maximal 
autocorrelation of lag 3 / weighted by atomic polarizabilities (R3P+), etc. 

Functional number of total secondary C(sp3) (NCS), number of ring tertiary C(sp3) 
(NCRHR), number of secondary C(sp2) (n=CHR), number of tertiary amines 
(aliphatic) (NNR2), number of N hydrazines (aromatic) (nN-NPH), number of 
nitriles (aliphatic) (NCN), number of phenols (NOHPH), number of ethers 
(aromatic) (NRORPH), number of solfures (NRSR), etc. 

Atom-Centred CHR3 (C-003), CR4 (C-004), X--CR..X (C-034), Ar-C(=X)-R (C-039), R-
C(=X)-X / R-C#X / X-=C=X (C-040), X--CH..X (C-042), H attached to C1(sp3) 
/ C0(sp2) (H-047), RCO-N< / >N-X=X (N-072),R2S / RS-SR (S-107), etc. 

connectivity 
indices 

X0(connectivity index chi-0), connectivity index chi-1(x1), average connectivity 
index chi-0(XOA) 

information indices Uindex(Balaban U index), IC0(information content index), TIC0(total 
information content index) 

edge adjacency 
indices 

EEig01x(Eigenvalue 01),EEig01r(Eigenvalue 01 from edge)  

eigenvalue-based 
indices 

Eig1v(Leading eigenvalue from van der Waals weighted distance 
matrix),SEigm Eigenvalue sum from mass weighted distance 
matrixeigenvalue-based indices 
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Table 3. The results of MLR analysis with different types of descriptors 
 

Eq. Descriptors Equation R2 F Q2 SE 
1 Chemical Y=2.734(±0.471)+0.006 (±0.001)SA1 0.59 29.02 0.51 0.23 
2 constitutional Y=4.505(±0.390)+3.092 (±0.533)nR05+2.552(±0.529)nR09 

0.698(±0.297)ns 
0.54 17.22 0.49 0.23 

3 Topological descriptors Y=21.196(±6.273)+0.011 (±0.002)DDr05+129.265(±34.518)X3A 
+3.174(±1.352)PJI2 

0.56 14.15 0.49 0.13 

4 Geometrical descriptors Y=5.409(±0.396) + 0.001(±0.000)DDI0.035(±0.015)G1 0.21 5.75 0.17 0.21 
5 Fuctional group counts Y=4.777(±0.181)0.824 (±0.307Nnn+1.026(±0.475)nCHR 0.56 14.28 0.50 0.16 
6 Charge descriptors Y=4.097(±0.478)+0.052 (±0.023)PCWTe 0.35 11.20 0.28 0.17 
7 Molecular walk  counts Y=4.142(±0.424)+0.076 (±0.030)SRW05 0.15 18,21 0.13 0.24 
8 BCUT descriptors Y=4.669(±0.931)0.260 (±0.114)BEHm1+1.143(±0.534)BELm4 0.51 17.43 0.45 0.16 
9 Galvz topol. Charge in 

dices 
Y=7.557(±0.782)23.375 (±7.436)JGI3 
 

0.21 9.88 0.17 0.31 

10 2D autocorrelations Y=3.366(±0.757)+1.111 (±0.377)GATS3e+4.035(±1.204)MATS8e 
+1.621(±0.780)MATS5e 

0.32 10.39 0.28 0.25 

11 RDF descriptors Y=4.901(±0.167)+0.031 (±0.012)RDF110u 0.17 6.86 0.14 0.25 
12 3D MoRSE descriptors Y=4.468(±0.245)3.429 (±0.545)Mor17v+1.965 (±0.484)Mor28u1.795 

(±0.465)Mor27u2.336 (±0.721)Mor24m+1.183 (±0.567)Mor24u 
 

0.45 11.62 0.36 0.34 

13 WHIM descriptors Y=4.354(±0.343)+0.166(±0.066)L2u 0.11 6.30 0.09 0.35 
14 GETAWAY descriptors Y= -20.489(±12.001)28.370(±6.263)R3v-

A+4.019(±1.525)HATS2u+26.884(±12.154)ISH 
0.25 7.37 0.17 0.21 

15 Atom-centered Y=4.481(±0.275)+0.070(±0.018)H0470.432(±0.153)C028 0.21 8.19 0.17 0.27 
16 Aromaticity Y=5.171(±0.153)0.333(±0.444)HOMT 0.14 0.57 0.11 0.16 
17 Randic molecular Y4.046(±2.600)+0.150(±0.188)DP060.290(±3.420)SHP2 0.23 1.64 0.17 0.19 
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Table 4. Statistical parameters for testing prediction ability of the MLR, GA-PLS, PCR, and FA-
MLR models 

 

RMSEp R2p RMSEcv R2LOOCV R2 Model 

0.18 0.80 0.23 0.59 0.65 MLR 

0.25 0.89 0.17 0.72 0.80 GA-PLS 

0.21 0.82 0.14 0.72 0.77 PCR 

0.15 0.71 0.18 0.61 0.66 FA-MLR 
R2: Regression Coefficient for Calibration set; R2LOOCV: Regression Coefficient for Leave One Out Cross 

Validation;  RMSEcv: Root Mean Square Error of cross validation; R2p: Regression Coefficient for prediction set 
RMSEp: Root Mean Square Error of prediction set 

 
Table 5.  Numerical values of factor loading numbers 1–4 for descriptors after 

VARIMAX rotation 
 
Descriptors Component Extraction 

F1 F2 F3 
SA1 .650 -.308 .190 .554 
X3A -.190 .904 -.031 .855 
PJI2 .093 -.178 -.549 .342 
JGI3 -.123 -.126 .900 .840 
SHP2 -.456 .597 .596 .919 
MOR28U -.559 .550 .141 .634 
MOR17V -.831 -.022 .306 .785 
nNN .830 -.039 -.241 .748 
C028 -.003 -.898 -.140 .826 
H047 .616 -.433 -.476 .794 
%variance 27.619 26.139 19.215 72.973 

 
Table 6. The results of PCR analysis 

 
Model 
 

Unstandardized 
coefficients 

Standardized 
coefficients 

t Sig. 
 

R2 SE Q2 F 

B Std. error Beta 
(Constant) 5.026 .096  52.150 .000 0.77 0.23 0.72 12.97 
F1 
F2 
F3 

.508 .097 .464 5.243 .000     

.250 .097 .229 2.584 .011     
-.211 .097 -.193 -2.180 .032     

 
Table 7. The results of FA-MLR analysis with different types of descriptors 

 

Model Unstandardized 
coefficients 

Standardized 
coefficients 

t Sig. R2 F Q2 SE 

B Std. error Beta       

(Constant) -4.456 1.004  -3.354 .001 0.657 24.74 0.62 .32 

nArNO2 -0.383 0.077 0.367 5.511 .000     

nR09 2.234 0.432 0.305 3.372 .001     

n COOH 5.417 1.643 0.178 2.080 .000     
 

3.4 Robustness and Applicability Domain 
of the Models  

 

Leverage is one of standard methods for this 
purpose. Warning leverage (h*) is another 

criterion for interpretation of the results. The 
warning leverage is, generally, fixed at 3k/n, 
where n is the number of training compounds 
and k is the number of model parameters. A 
leverage greater than warning leverage h* 
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Tabel 8. Leverage (h) of the external test set molecules for different models. The last row (h*) is 
the warning leverage 

 

FA-MLR PCR GA-PLS MLR Molecule .no 
0.06075 0.08226 0.17875 0.09746 17 
0.06450 0.04997 0.09862 0.06096 18 
0.05698 0.03309 0.11962 0.05874 19 
0.05577 0.06298 0.23594 0.07026 20 
0.05129 0.03078 0.08769 0.02240 29 
0.04644 0.03261 0.09271 0.02604 30 
0.05590 0.02755 0.06821 0.02844 32 
0.04359 0.03276 0.08710 0.09571 34 
0.04380 0.03351 0.08929 0.08727 35 
0.04393 0.02476 0.06628 0.04394 39 
0.04266 0.02965 0.10634 0.06903 44 
0.04241 0.02842 0.10575 0.07313 45 
0.04210 0.02116 0.12216 0.06198 51 
0.02684 0.04365 0.12957 0.09509 54 
0.02418 0.04313 0.09905 0.04910 56 
0.02332 0.04563 0.10247 0.05542 57 
0.02326 0.04836 0.10751 0.05739 58 
0.02545 0.04949 0.08442 0.04911 60 
0.03819 0.06323 0.09106 0.07641 62 
0.04589 0.00384 0.12240 0.04640 80 
0.02662 0.08482 0.16624 0.04854 85 
0.02128 0.02738 0.11755 0.06481 87 
0.03038 0.05823 0.17742 0.04033 93 
0.21429 0.12857 0.42857 0.25714 h* 

 

means that the predicted response is the result 
of substantial extrapolation of the model and 
therefore may not be reliable [42]. The calculated 
leverage values of the test set samples for 
different models and the warning leverage, as 
the threshold value for accepted prediction, are 
listed in Table 8. As seen, the leverages of all 
test samples are lower than h* for all models. 
This means that all predicted values are 
acceptable. 
 

4. CONCLUSIONS 
 

Quantitative relationships between molecular 
structure and anti-cancer activity of isatin 
derivatives were discovered by four 
chemometrics methods: MLR, GA-PLS, PCR and 
FA-MLR. MLR analysis show positive effect of 
the log p, nR05 (number of 5-membered rings), 
nR09 (number of 9-membered rings) DDr05, (2D 
Petitjean shape index) and X3A (average 
connectivity index of order 3), DDI index, nN-N 
(number of hydrazine derivatives) and nCar 
(number of aromatic C(sp2) of the molecules on 
the activity. It also explain the negative effect of 
ns (number of sulfur) and G1on the activity. The 
FA-MLR describes the effect of SA, H047, C028, 
JGI3 and nNN on cytotoxic activity of the studied 
molecules. The quality of PCRA equation is 

better than those derived from FA-MLR. factors 1 
and 2 have higher loadings for the chemical, 
constitutional, Functional, Atom-center, BCUT 
Information, geometrical, Walk and path counts 
and 2D autocorrelations indices whereas 
information about the Connectivity indices, 3D 
WHIM,  MoRSE descriptors and Functional 
descriptors are highly incorporated in factor 3 
descriptors. 
 

A comparison between the different statistical 
methods employed revealed that GA-PLS 
represented superior results and it could explain 
and predict 80% and 72% of variances in the 
pIC50 data, respectively. 
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