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Abstract 
 

Differential equations play significant role in the world of finance since most problems in these areas are 
modeled by differential equations. Majority of these problems are sometimes nonlinear and are normally 
solved by the use of numerical methods. This work takes a critical look at Nonlinear Black-Scholes 
model with special reference to the model by Guy Barles and Halil Mete Soner. The resulting model is a 
nonlinear Black-Scholes equation in which the variable volatility is a function of the second derivative of 
the option price. The nonlinear equation is solved by a special class of numerical technique, called, the 
meshfree approximation using radial basis function. The numerical results are presented in diagrams and 
tables. 
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1 Introduction 
 
A financial derivative is a financial instrument whose value is contingent on the value of the underlying 
asset. Forwards, futures and options are some of the simplest financial derivatives we have. An option can be 
described as a contract or financial agreement which gives its owner the right to buy or sell an underlying 
asset at a fixed price, say, �, at any time on or prior to a given date, �. There two main types options, 
namely, the call option which gives its owner the right to purchase or buy an option and a put option which 
gives its owner the right to sell or trade the option. The value of an option �(�, �) is dependent on the price 
of the underlying asset � and the time �. The standard Black-Scholes partial differential equation is generally 
used to value the European option. The Black-Scholes partial differential equation was developed by Fischer 
Black and Myron Scholes in 1973 [1]. 
 
During [2] discussed that some of the assumptions used in the formulation of the Black-Scholes model 
proves to be too restrictive in practice. For example, some of the assumptions stated were that, interest rate is 
known and constant through time and transactions cost do not exist in hedging a portfolio whereas in the real 
world, interest rate is not fixed or constant and transaction cost do exist. Since then, there have been several 
and fruitful reformulation of Black-Scholes model that take into account interest rate or transaction costs. 
The resulting equation of the Black-Scholes model becomes nonlinear for the option price. In this case, to 
compute the solution by the analytical formula of the standard Black-Scholes equation is difficult and hence 
has to resort to numerical methods or approximations.  
 
In this paper, we study the Black-Scholes equation with transaction cost with a special reference to the model 
by Guy Barles and Halil Mete Soner. We then apply the Meshfree radial basis function (���) as a spatial 
approximation for the solution of the option value. 
 
The meshfree methods have recently been studied by a couple of authors. Kansa [3] used radial basis 
function (���) to solve some of the problems in computational fluid dynamics. Kansa used the multi-
quadric radial basis function for parabolic, hyperbolic and elliptic PDEs. 
 
Sharan et al. [4] applied the multiquadric RBF to obtain the solution of elliptic PDEs with Dirichlet and 
Neumann boundary conditions. He concluded that, the results found by the RBF and the exact/analytical 
solutions were very good. 
 

Goto et al. [5] studied options valuation by using radial basis function approximation whiles Belova et al. 
(2008) presented meshfree approximation based on RBF for the numerical solution of European, Barrier, 
Asian and American options. 
 
Milovanovic and Shcherbakov [6] proposed two localized RBF methods, for solving financial derivative 
pricing problems arising from models with multiple stochastic factors. 
 

2 Materials and Methods  
 
2.1 Nonlinear Black-Scholes equation 
 
The Black-Scholes model, given by equation (2.1) below 
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��
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+
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���
= ��                                                                                                                 (2.1) 

 
was derived by Fischer Black and Myron Scholes in 1973 based on certain assumptions, such as “no 
transaction cost.” Thus, when transaction cost is incorporated into the standard Black-Scholes equation, the 
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model result in fully nonlinear Black-Scholes model according to during [2] and stated the nonlinear 
equation as:  
 

 �� +
�

�
��(�, �, ��, ���)

������ + ���� − �� = �(�, �, ��),    � > 0,   � ∈ (0, �)                                     (2.2) 

 
Where � denotes the riskless interest rate, �� is the nonlinear volatility, and the nonlinear function � models 
different effects. 
 

2.2 Volatility models 
 
In the Black-Scholes model, the parameter assumed to be constant is the volatility �. Ankudinova [7] stated 
that there are many different approaches which have been developed to improve the model by treating the 
volatility in different ways using modified volatility function, ��(. ) to modify the effects of transaction cost. 
Some of the modified volatility models developed are the model by Leland [8], Model of Hodges and 
Neuberger [9], Boyle and Vorst developed in 1992 [10], and the model by Barles and Soner developed in 
1998 [11] .  
 
2.2.1 Transaction cost model of Barles and Soner 
 
Barles & Soner [11] apply the utility function approach of Hodges & Neuberger [9] with the help of an 
asymptotic analysis of partial differential equations. Considering a financial market which consists of a 
single bond and a single stock, the price is characterized by:  

                     
��(� )=  �(� )[��� +  ���  (� )],     � ∈ [� , � ]                                                                                    (2.3)     

 
with initial data �(�)= �, � (. ) is a unit-dimensional Brownian motion, � is the constant mean return rate 
and � is the constant volatility.    
 
According to Barles and Soner, if the process of bonds owned �(�) and the process of shares owned �(�), 
then the trading strategy (�(�), � (�))  can be a pair of non-decreasing processes with �(� )= � (� )= 0, 
which are interpreted as the cumulative transfers measured in shares of stock. � (�) is measured in shares 
from stock to bond and �(�) is measured in shares from bond to stock. Let � ∈ (0,1) be the proportional 
transaction cost and initial values � and �, � ∈ [�, �],  
 
The processes X (s) and Y (s) evolve according to    

 

�(�)= � − ∫ �(�)(1+ �)��(�)
�

�
+ ∫ �(�)(1− �)�� (�),    � ∈ [�, �]                                           (2.4)

�

�
   

 
and 

 
 �(�)= � + �(�)− � (�),   � ∈ [�, �]                                                                                                       (2.5)  

 
where the first integral represents buying shares of stock at a price increased by the proportional transaction 
cost µ and the second integral represents selling stock at a reduced price of the transaction cost. We add the 
amount of the stocks bought and subtract the amount for the stocks sold to the initial amount of stocks owned 
in equation (2.5). According to the utility maximization approach of Hodges & Neuberger, the price of a 
European Call option can be found by the difference between the maximum utility of the terminal wealth 
when there is no option liability and when there is such a liability. Let the exponential utility function be 
 

  

�(�)= 1− ���,   �∈ ℝ                                                                                                                                (2.6) 
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where � > 0 is the risk aversion factor. Boyle & Vorst [10] considered two optimization problems. The first 
value function is the expected utility from the final wealth when there are no option liabilities taken over the 
transfer processes 
 

 ��(�, �, �(�), �)∶=
���

�(. )� (. )    � � � �� 
(� )+  � (� )�(� )��                                                           (2.7) 

 
and the second value function is the expected utility from the final wealth assuming that we have sold � 
European call options taken over the transfer processes  
 

��(�, �, �(�), �)∶=
���

�(. )� (.)    � 
[ � (� (� )+  � (� )�(� )− �((� )− �)�)]                             (2.8) 

 
According to Hodges & Neuberger [9] the price of each option is equal to the maximal solution Λ of the 
algebraic equation 
 

��(� + �Λ, �, �(�), �)= ��(�, �, �(�), �) 
 
This means that the option price L equals the increment of the initial capital at time � that is needed to cope 
with the option liabilities arising at � Ankudinova [7]. By a linearity argument selling � options with risk 
aversion factor of � yields the same price as selling one option with risk aversion factor γ�. 
 
This leads to performing an asymptotic analysis as ��⟶ ���. We then consider 

 
�(�)= 1− ����� 
 

We set 
 
 �� = 1/� 
 

Then, we have 
 

��(�)= 1− ���/�      � ∈ ℝ               
         
Our optimization problem then becomes 
 

 ��(�, �, �(�), �)= 1− 
���

�(. )� (. )
    � ����/�(� (� )� � (� )�(� ))� 

 
and 

 

 ��(�, �, �(�), �)= 1− 
���

�(. )� (. )
    � ����/�(� (� )� � (� )�(� )�(�(�)��)

�
� 

 
Now define, �� and �� : ℝ × (0,∞)× (0, �)⟶ ℝ    by 
 

��(�, �, �(�), �)= 1−  ���/�(����(�)��� (� ,�(� ),�)) 

��(�, �, �(�), �)= 1−  ���/�(����(�)��� (� ,�(� ),�)) 
 

Then 
 
��(� , �(� ), �)= 0  and  ��(� , �(� ), �)= (�(�)− �)� 
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And the option price is given by 
 

Λ ��, �, �(�), �,
�

�
, 1� =  ��(� , �(� ), �)− ��(� , �(� ), �) 

 
Barles & Soner [11] state that the value functions ��  and ��  are the unique solutions of the dynamic 
programming equation  
 

��� �−�� +
1

2
������� − ����, −�� + �(1+ �)��, −�� + �(1− �)��� = 0                                     (2.9) 

 
by the theory of stochastic optimal control. This leads to a dynamic programming equation for �� and ��, 

which are independent of the variable �. Supposing that the proportional transaction cost � = �√� for some 
constant � > 0, Barles & Soner prove that as � ⟶ 0 and  � ⟶ 0,    �� ⟶ 0  and  �� ⟶ �,  
 

�� +
1

2
��������� + ���� − �� = 0                                                                                                           (2.10) 

 
where 

 

��� = ���1+ Ψ(��(���)��������                                                                                                             (2.11) 
 

is the nonlinear volatility. �  denotes the constant volatility of the underlying, � = �/√�  and Ψ(�) is the 
solution to the following nonlinear ordinary differential equation 
 

Ψ′(�)=
Ψ(�)��

���Ψ(�)��
                  � ≠ 0                                                                                                          (2.12) 

 
with the initial condition 
 

Ψ(0)= 0                                                                                                                                                        (2.13) 
 
 

Barles & Soner analyzed the ordinary differential equation in equations (2.12) and (2.13) and stated that 
 

lim�→∞
Ψ(�)

�
= 1   and  lim�→�∞

Ψ(�)

�
= −1                                                                                            (2.14) 

 
Because of equation (2.14), the function Ψ(. ) is treated as identity for large arguments. The volatility then 
becomes 
 

       ��� = ���1+ (��(���)��������                                                                                                                 (2.15) 

 

2.3 Meshfree approximation 
 
A radial Basis function is a real valued function whose value depends only on the distance from some other 
point, �, called center such that 
 
               �(�, �)= �(∥ � − � ∥). 
 
According to Fasshauer [12], the Radial Basis Function (RBF) approximation deals with a single variable 
basis function and a specific Euclidean norm that decreases a multi-dimensional problem into a unit-
dimensional problem. Duffy [13] stated that the radial basis function method does not depend on the 
dimension of the problem. Fasshauer explained that, the radial basis function method approximates the value 
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of a function as the weighted sum of radial basis functions. These functions are then evaluated on a set of 
points called centers, which are quasi-randomly scattered over the domain of the problem, Guarin et al. [14]. 
The weights are found by matching the approximated and observed values of the function. Once the weights 
are calculated, they are used to approximate the value of the function at any point over the entire domain. 
 
Following Fasshauer [12], we consider the set of nodes or centers � = [��, ��,⋯ , ��]′ with �� ∈ ℝ

�, � ≥ 1 

and the data values �� ∈ ℝ .  We assumed that �� = ����, ��  � = 1,2,3,⋯ ,�   where �  is an unknown 

function and � is the time. Let �(�, �) be a linear combination of � certain basis functions such that  
 

  �(�, �)≃ ∑ ��(�)�(∥ � − � ∥)�
���                                                                                                             (2.16)  

 
where the coefficients ��(�) are the unknown weights, �(∙) is the radial basis function and ∥∙∥ Euclidean 

norm. Equation 2. 16 can be represented as a system of linear equations.    
 

2.4 Application of radial basis function  
 
An efficient numerical method is developed based on meshfree approximation using radial basis function 
which would be used to solve the nonlinear Black-Scholes model using the transaction cost model of Guy 
Barles and Halil Mete Soner. This model leads to a system of differential equations which is solved by a time 
integration scheme. This is achieved by using the theta (�) method. 
 
2.4.1 Discretization 
 
We approximate the value of the option, �; in the nonlinear Black-Scholes equation using the radial basis 
function as 
 

       �(�, �)≃ ∑ ��(�)���, ���
�
���                                                                                                                     (2.17) 

 

where �� are unknown coefficients and ���, ���  are the radial basis functions. Multiquadric radial basis 
function (MQ-RBF) would be used for this problem 
 

     ���, ��� = ���+∥ � − �� ∥�                                                                                                                       (2.18) 
 

Where �� is the asset price at the collocation point � for approximating the option price �, ∥ � − �� ∥ denotes 

the radial distance of each of the � scattered data points ��. The parameter � is positive and known as shape 

parameter. 
 
It is well known that the following nonlinear Black-Scholes equation holds for the option price �(�, �) with 
asset price � at time � 
 

        
��(�,�)

��
+

�

�
�����

���(�,�)

���
+ ��

��(�,�)

��
− �� = 0                                                                                        (2.19) 

 
With the nonlinear term given as 
 

   ��� = ���1+ (��(���)��������                                                                                                                (2.20) 
 
and the initial condition given by the terminal payoff function 
 

 �(�, �)= �
��� �(� )   �;  0 ��� ���� ������

��� � − �(� ), 0 ��� ��� ������
� 

 
where � is the time of maturity and � is the strike price. 
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Differentiating equation 2.17, we obtain the following 
 

     
��(�,�)

��
= ∑  

���(�)

��
���, ���

�
���                                                                                                                      (2.21) 

 

     
��(�,�)

��
= ∑  ��

�� ��,���

��

�
���                                                                                                                              (2.22) 

 

      
���(�,�)

���
= ∑ ��

��� ��,���

���
�
���                                                                                                                            (2.23) 

 
and the derivatives of equation 2.18 are also given by 
 

    
��

��
=

����

�(����)
����

                                                                                                                                           (2.24) 

 

     
���

���
=  

�

�(����)
����

−
������

�

�(������
�
���)�

                                                                                                          (2.25) 

 
Following the approach in the article of Gonzalez-Gaxiola & Gonzalez-Perez  [15], We obtain 
 

    �� (�, � + △ � )=  �� (�, � )                                                                                                                   (2.26) 
 
by the application of the theta method of the Crank-Nicholson scheme, where 
 

 � =  1− �∆� �
�

�
��

��

���
�1+ ���(���)����

��

���
�� + ��

�

��
− �� 

 � =  1+ (1− �)∆� �
�

�
��

��

���
�1+ ���(���)����

��

���
�� + ��

�

��
− �� 

 
The option price which is governed by equation 2.19 would be estimated with the radial basis function, 
equation 2.17. Substituting equation 2.17 into equation 2.26 leads to 
 

    ���( � + △ � )� ∥ � − �� ∥=  ���( � )� ∥ � − �� ∥                                                                            (2.27) 

 
Equation 2.27 is solved for ��. Thus equation 2.27 is solved iteratively from the expiration date � = � to the 

date of purchase � = 0. Once the parameter �(0) is obtained at the date � = 0, the option price at the date of 
purchase is estimated from �(0) by using 
 

 �(�, �)≃ ∑ ��(�)���, ���
�
���           

 

3 Numerical Results 
 
Using the multi quadric radial basis (equation 2.18) function approach, the resulting problems for the Black-
Scholes model with transaction cost is solved via Crank Nicolson’s method. The parameters are presented in 
Table 1. 
 
The parameter values are provided by Belova  and Shmidt, [16] with the exception of the shape parameter � 
from Mawah [17]. We consider an algorithm that was suggested in Goto et al [5] for evaluating the option 
price,�(�, �). The reader can see the algorithm in Goto et al [5]  and Belova et al [16 for more details. 
 
All the values and diagrams obtained for the European option with and without transaction cost were 
implemented in MATLAB R2018b.  
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Table 1. Parameter values 
 

Parameter Description Value 
����  Maximum asset price 30 
� Number of asset data points 121 
∆� Number of time steps 0.05 
� Expiration date 0.5 
� Exercise price 10 
� Risk free interest rate 0.05 
� Volatility 0.2 
� Crank-Nicholson method 0.5 
� Shape parameter 0.01 
� Transaction Cost parameter 0.005 

 

 
 

Fig. 1. Values of the nonlinear option price in comparison with the exact solution 
 

Table 2. The comparison of exact value and option value with transaction coast 
 

Asset price, � Exact value Option value with transaction cost 
0.0 0.0000 0.0000 
2.0 0.0000 0.0000 
4.0 0.0000 0.0000 
6.0 0.0000 0.0000 
8.0 0.0456 0.0561 
10.0 0.6888 0.6983 
12.0 2.2952 2.3104 
14.0 4.2496 4.2681 
16.0 6.2470 6.2781 
18.0 8.2469 8.2500 
20.0 10.2469 10.2960 
22.0 12.2469 12.2877 
24.0 14.2469 14.3010 
26.0 16.2469 16.2899 
28.0 18.2469 18.2654 
30.0 20.2469 20.2743 
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Fig. 1 shows a comparison of results between the options values with transaction cost and the exact values or 
the analytical solution of the standard Black Scholes equation (equation 2.1). Even though the results seems 
identical, there is a substantial difference in the results as shown in Table 2. From Table 2, the exact value of 
the option and the option value with transaction cost are 20.2469 and 20.2743 respectively for a maximum 
asset price of 30.0. This means that, the numerical scheme used approximates the option value produces a 
minimum error of less than 5% as the asset price increases. 
 

Fig. 2 depicts the superiority of options with transaction cost over options without transaction cost as the 
graph without cost diverges slightly away for higher values of the asset price, �. 
 

 
 

Fig. 2. The option values with and without transaction cost 
 

Table 3. Option values with transaction cost 
 

Asset Price, � Option Price with 
� = �. �� 

Option Value 
with � = �. ��� 

0.0 0.0000 0.0000 
2.0 0.0000 0.0000 
4.0 0.0000 0.0000 
6.0 0.0000 0.0000 
8.0 0.0745 0.0561 
10.0 0.7179 0.6983 
12.0 2.3461 2.3104 
14.0 4.2895 4.2681 
16.0 6.3263 6.2781 
18.0 8.3041 8.2500 
20.0 10.3254 10.2960 
22.0 12.3085 12.2877 
24.0 14.3432 14.3010 
26.0 16.3204 16.2899 
28.0 18.2871 18.2654 
30.0 20.3056 20.2743 
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The curves in Fig. 3 look identical as the difference between the option values with a = 0.005 and a = 0.01 is 
not much. For maximum asset price of 30, the option values with transaction costs a = 0.005 and a = 0.01 are 
20.2743 and 20.3056 respectively. This can be confirmed from Table 3. It can clearly be seen that when the 
higher the value of a; the higher the value of the option price. 
 

 
 

Fig. 3. Option values with transaction cost when a is 0.01 and 0.005 
 

4 Conclusion 
 
In this paper, we first reviewed option pricing and meshfree methods in general. We used a special class of 
numerical methods, namely, Meshfree Methods using radial basis function as a spatial approximation, to 
study the differential models for pricing options. The method was applied to solve the Black-Scholes 
standard equation in the presence transaction cost. The application of radial basis functions led to a system of 
differential equations which were solved by the Crank- Nicholson Scheme. The numerical results describing 
the payoff function and the values of the option were presented. We compared the influence of transaction 
costs on the value of the option to that of the standard Black-Scholes option price as well as the option value 
without transaction cost. The option values obtained in the presence of transaction costs were slightly higher 
in all cases. 
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