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ABSTRACT

The main focus of this study is to introduce a new category of generalized closed sets, referred to as Ip-
closed sets, within the framework of ideal topological spaces. By using a few instances, we demonstrate Ip-
closed sets and establish some fundamental properties of Ip-closed sets. We also investigate the relationship
between Ip-closed sets and other classes of generalized closed sets in ideal topological spaces, such as Ig-
closed sets, αIg-closed sets, and Irg-closed sets. Then, we focus on the topological implications of Ip-closed
sets and investigate how they relate to the concepts of Ip-continuous map, Ip-irresolute map, and a strongly
Ip-continuous map. First and foremost, we define the Ip-continuous map, investigate the behavior of Ip-
continuous map with respect to Ip-closed sets, and derive several important properties of Ip-continuous map.
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Further, we studied their relationships with other classes of continuous maps in ideal topological spaces.
Nevertheless, we defined the definitions of Ip-irresolute maps and strongly Ip-continuous maps in ideal
topological spaces. We explored the connections with the notions of Ip-continuous map, Ip-irresolute map,
and a strongly Ip-continuous map. Our results provide new insights into the study of ideal topological spaces.

Keywords: Preopen set; ideals; Ip-closed set; Ip-continuous map; Ip-irresolute map.
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1 INTRODUCTION
Today’s mathematics incorporates topological concepts
into nearly every discipline. It has grown to be an
effective tool for mathematical research. Levine[1]
made a groundbreaking contribution to topology in 1970
by introducing the concept of generalized closed sets,
also known as g-closed sets, within a topological space.
After that, several mathematicians turned their attention
to various forms of topology by finding new types of
generalized closed sets[2, 3, 4].

Topological ideals have been a subject of investigation
since early 1930, paving the way for several important
discoveries in the field[5, 6]. The study of ideals in
topological spaces was initiated almost fifty years ago
by Kuratowski[7] and Vaidyanathaswamy[8], and since
then, researchers have been actively exploring the use
of topological ideals to extend basic concepts in general
topology[9, 10, 11]. In the field of ideal topological
spaces, Dontchev et al.[12] were the pioneers of the
concept of Ig-closed sets. Navaneethakrishnan and
Sivaraj[13] made significant contributions to the field of
ideal topological spaces by introducing the concept of
Irg-closed sets. Further, the study of αIg sets in ideal
topological spaces was initiated by Maragathavalli and
Vinothini[14].

In ideal topological spaces, the above-mentioned closed
sets are defined as follows:

A subset A of an ideal topological space (X, τ, I) is
said to be

1. Ig-closed set[12] if A∗ ⊆ U whenever A ⊆ U
and U is open.

2. Irg-closed set[15] if A∗ ⊆ U whenever A ⊆ U
and U is regular open.

3. αIg-closed set [14] if A∗ ⊆ U whenever A ⊆ U
and U is α-open.

Among their various research endeavors, Jankovi and
Hamlett[16] looked into the notion of continuous maps

in ideal topological spaces. Following that, several
researchers came up with new types of continuous
maps in ideal topological spaces, which included Ig-
continuous maps, Irg-continuous maps, and αIg-
continuous maps.

In ideal topological spaces, the above-mentioned
continuous maps are defined as follows:
A function f : (X, τ, I)→ (Y, σ,J ) is called

1. Ig-continuous[17] if f−1(V ) is Ig-closed inX for
every closed set V of Y .

2. Irg-continuous[15] if f−1(V ) is Irg-closed in X
for every closed set V of Y .

3. αIg-continuous[14] if f−1(V ) is αIg-closed inX
for every closed set V of Y .

The objective of this paper is to provide a detailed
analysis of a newly defined set of generalized closed
sets in ideal topological spaces known as Ip-closed
sets. This paper will conduct an in-depth examination
of the fundamental properties of this new class of
generalized closed sets, and explore its connections
with other types of generalized closed sets in ideal
topological spaces. We defined the Ip-continuous
map with an illustrated example. We have explored
various properties of the new type of Ip-continuous
map in this study, shedding light on its behavior in
ideal topological spaces. Further, we defined the Ip-
irresolute map and the strongly Ip-continuous map with
some corresponding examples and investigated some
significant properties.

2 MATERIALS AND METHODS
Definition 2.1. Let (X, τ) be a topological space. An
ideal I on X is a nonempty family of subsets of X that
satisfies the following two conditions:

1. A ∈ I and B ⊆ A implies B ∈ I.

2. A ∈ I and B ∈ I implies A ∪B ∈ I.
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If I is an ideal on X, then (X, τ, I) is called an ideal
topological space.

Suppose (X, τ) is a topological space and I is an ideal
on X. Then, let P (X) denote the set of all subsets
of X. In the context of τ and I, we can define a set
operator (.)∗ : P (X) → P (X) as a local function[7]
of A. This function is defined as follows: for A ⊆ X,
A∗(I, τ) = {x ∈ X | U ∩ A 6∈ I for every U ∈ τ(x)}
where τ(x) = {U ∈ τ | x ∈ U}. we use a Kuratowski
closure operator cl∗(.) for a topology τ∗(I, τ), which we
call the ∗-topology, and it is finer than τ . The operator
is defined as cl∗(A) = A ∪ A∗(I, τ)[18]. To avoid any
confusion, we will use A∗ to refer to A∗(I, τ) and τ∗ to
refer to τ∗(I, τ) when there is no possibility of ambiguity.

Definition 2.2. Let A be a subset of the topological
space (X, τ). Then A is referred to as,

1. preopen set[19] if A ⊆ int(cl(A)).

2. α-open set[20] if A ⊆ int(cl(int(A))).

3. regular open set[21] if A = int(cl(A)).

Lemma 2.1. Given an ideal topological space (X, τ, I)
and subsets A,B of X, the following properties are
satisfied:[16]

1. A ⊆ B = A∗ ⊆ B∗,

2. A∗ = cl(A∗) ⊆ cl(A),

3. (A∗)∗ ⊆ A∗,

4. (A ∪B)∗ = A∗ ∪B∗,

5. (A ∩B)∗ ⊆ A∗ ∩B∗.

Utilizing the materials mentioned above, we have
developed a novel form of generalized closed set in
ideal topological spaces known as Ip-closed sets. We
can explore other properties by employing these sets.

3 RESULTS AND DISCUSSION
Definition 3.1. In an ideal topological space (X, τ, I),
a subset A is known as a Ip-closed set if A∗ ⊆ U
whenever A ⊆ U and U is preopen.

Example 3.1. 1. Let X = {a, b, c}, τ =
{X, ∅, {a}, {b}, {a, b}} and I = {∅, {a}, {c}, {a, c}}.
Thus, the preopen sets are X, ∅, {a}, {b}, {a, b}.
As a result, the Ip-closed sets areX, ∅, {a}, {c},
{a, c}, {b, c}.

2. Let X = {a, b, c}, τ = {X, ∅, {a}, {a, b}, {a, c}}
and I = {∅, {b}, {c}, {b, c}}. Thus, the preopen
sets are X, ∅, {a}, {a, b}, {a, c}. As a result, the
Ip-closed sets are X, ∅, {b}, {c}, {b, c}.

3. LetX = {a, b, c, d}, τ = {X, ∅, {a}, {a, d}, {a, b, c}}
and I = {∅, {b}, {c}, {b, c}}. Thus, the preopen
sets are X, ∅, {a}, {a, b}, {a, c}, {a, d}, {a, b, c},
{a, c, d}, {a, b, d}. As a result, the Ip-closed
sets are X, ∅, {b}, {c}, {d}, {b, c}, {b, d}, {c, d},
{b, c, d}.

Remark 3.1. The fact that every closed set is a Ip-
closed set can be observed as follows: Consider a
closed set A and a preopen set U such that A ⊆ U .
Then, A∗ ⊆ U . However, it should be noted that not
all Ip-closed sets are closed sets, as exemplified in
examples 1 and 3.

Definition 3.2. In an ideal topological space (X, τ, I),
a subset A is classified as a Ip-open set if its
complement, Ac, is a Ip-closed set.

Proposition 3.1. Let A be an Ip-closed set in (X, τ, I),
and assume B ⊆ A. It follows that B is also an Ip-
closed set in (X, τ, I).

Proof. Suppose A is a Ip-closed set in (X, τ, I). Then
for any preopen set U containing A, we have A∗ ⊆
U . Additionally, if B ⊆ A, then B∗ ⊆ A∗. As a
consequence, if B ⊆ U where U is preopen, then
B∗ ⊆ A∗ ⊆ U . Therefore, B is also a Ip-closed set
in (X, τ, I).

Lemma 3.2. In an ideal topological space, every Ip-
closed set is a Ig-closed set.

Proof. Let A ⊆ U and U is open. Clearly every open
set is a preopen set, it follows that U is also preopen.
As A is a Ip-closed set, A∗ ⊆ U , which implies that, A
is a Ig-closed set.

It is worth noting that the inverse of the lemma
mentioned above does not hold in general. An example
that demonstrates this fact is as follows:

Example 3.3. Let X = {a, b, c}, τ = {X, ∅, {a}, {b, c}}
and I = {∅, {b}}. Following that, the Ig-closed sets
are X, ∅, {a}, {b}, {c}, {a, b}, {a, c}, {b, c} and the Ip-
closed sets are X, ∅, {a}, {b}, {a, b}, {b, c}. In view of
the fact that {c} is a Ig-closed set but not a Ip-closed
set in (X, τ, I).

Lemma 3.4. In an ideal topological space, every Ip-
closed set is a αIg-closed set.
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Proof. Let A ⊆ U and U is α-open. Clearly every
α-open set is a preopen set, it follows that U is also
preopen. As A is a Ip-closed set, A∗ ⊆ U , which
implies that A is a αIg-closed set.

It is worth noting that the inverse of the lemma
mentioned above does not hold in general. An example
that demonstrates this fact is as follows:

Example 3.5. Let X = {a, b, c}, τ = {X, ∅, {b}, {a, c}}
and I = {∅, {b}}. Following that, the αIg-closed sets
are X, ∅, {a}, {b}, {c}, {a, b}, {a, c}, {b, c} and the Ip-
closed sets are X, ∅, {b}, {a, c}. In view of the fact
that {a, b} is a αIg-closed set but not a Ip-closed set in
(X, τ, I).

Lemma 3.6. In an ideal topological space, every Ip-
closed set is a Irg-closed set.

Proof. Let A ⊆ U and U is regular-open. Clearly every
regular-open set is a preopen set it follows that U is
also preopen. As A is a Ip-closed set, A∗ ⊆ U , which
implies that A is a Irg-closed set.

It is worth noting that the inverse of the lemma
mentioned above does not hold in general. An example
that demonstrates this fact is as follows:

Example 3.7. Let X = {a, b, c}, τ =
{X, ∅, {a}, {b}, {a, b}} and I = {∅, {c}}. Following that,
the Irg-closed sets are X, ∅, {c}, {a, b}, {a, c}, {b, c}
and the Ip-closed sets are X, ∅, {c}, {a, c}, {b, c}. In
view of the fact that {a, b} is a Irg-closed set but not a
Ip-closed set in (X, τ, I).

The interplay between the recently uncovered Ip-
closed sets and some of the other closed sets in
ideal topological spaces is demonstrated in the above
diagram.

Proposition 3.2. Let A and B be two Ip-closed sets in
the ideal topological space (X, τ, I). Then,

1. A ∪B is a Ip-closed set.

2. A ∩B is a Ip-closed set.

Proof. 1. Let U be a preopen subset of X that
contains the union of sets A and B (i.e., A∪B ⊆
U ). Then, either A ⊆ U or B ⊆ U . Since A and
B are both Ip-closed, we have that either A∗ is
a subset of U or B∗ is a subset of U . Therefore,
their union, A∗ ∪ B∗= (A∪B)∗, is a subset of U ,
and thus A ∪ B is a Ip-closed set contained in
U .

2. Assume A and B are Ip-closed sets in (X, τ, I),
and let U be a preopen set such that A and B
are subsets of U . Then, we have A∗ ⊆ U and
B∗ ⊆ U , since A and B are both subsets of U .
Moreover, since A∩B is a subset of A, it follows
that A∩B is also a subset of U . Similarly, A∩B
is a subset of B, so A ∩ B is also a subset of U .
Furthermore, A∗ ∩B∗ is a subset of A∗ and B∗,
and since both A∗ and B∗ are subsets of U , then
A∗ ∩ B∗ is also a subset of U . Consequently,
we have (A ∩ B)∗ ⊆ A∗ ∩ B∗ ⊆ U , whenever
A ∩ B ⊆ U and U is preopen. Thus, A ∩ B is a
Ip-closed set.

Definition 3.3. The intersection of all pre-closed sets
containing A defines the pre-closure of A, which is
denoted as pcl(A).

Theorem 3.8. Let (X, τ, I) be an ideal topological
space, and let A ⊆ X. Then, the following are
equivalent:

1. A is Ip-closed.

2. cl∗(A) ⊆ U whenever A ⊆ U and U is preopen
in X.

3. For every x ∈ cl∗(A), pcl({x}) ∩A 6= ∅.

4. cl∗(A)−A contains no nonempty preclosed set.

5. A∗ −A contains no nonempty preclosed set.

Proof.

(1) ⇒ (2). Suppose A is a Ip-closed set in X. then
A∗ ⊆ U whenever A ⊆ U and U is preopen in X and
so, cl∗(A) = A ∪ A∗ ⊆ U whenever A ⊆ U and U is
preopen in X.

(2)⇒ (3). Assume that x ∈ cl∗(A). If pcl({x}) ∩ A = ∅,
then A ⊆ X − pcl({x}). By (2), cl∗(A) ⊆ X − pcl({x}).
This statement is inconsistent with our fact. Hence
pcl({x}) ∩A 6= ∅.
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(3)⇒ (4). Assume that F ⊆ cl∗(A)−A, F is preclosed
and x ∈ F . Since F ⊆ X − A and F is preclosed,
pcl({x})∩A = ∅. Since x ∈ cl∗(A) by(3), pcl({x})∩A 6=
∅, this is contradiction to our fact. Thus, there are no
nonempty preclosed sets in cl∗(A)−A.

(4) ⇒ (5). Since cl∗(A) − A is equal to (A ∪ A∗) − A,
which in turn is equal to (A ∪ A∗) ∩ Ac, we have that
(A∩Ac)∪ (A∗∩Ac) = A∗∩Ac = A∗−A. Thus, A∗−A
has no nonempty preclosed set.

(5) ⇒ (1). Suppose that A ⊆ U , which is preopen,
we have, X − U ⊆ X − A. Thus, A∗ ∩ (X − U) ⊆
A∗ ∩ (X − A) = A∗ − A. Since A∗ is always closed, it
follows thatA∗ is preclosed. Therefore, A∗∩(X−U) is a
preclosed set that is contained in A∗−A. Consequently,
A∗ ∩ (X − U) = ∅, and so A∗ ⊆ U . This implies that A
is a Ip-closed.

Proposition 3.3. Suppose that (X, τ, I) is an ideal
topological space.

1. If A ∈ I, then A is a Ip-closed set.

2. If A ⊆ X, then A∗ is a Ip-closed set.

Proof. 1. Assume that A ∈ I and A ⊆ U , where U
is preopen. Since A∗ = ∅ for every A ∈ I, we
have cl∗(A) = (A ∪A∗) = A, which is contained
in U . Thus, by Theorem 3.8, A is a Ip-closed
set.

2. Let A ∈ (X, τ, I) and suppose that A∗ is a
subset of the preopen set U . Since (A∗)∗ is
always a subset of A∗, it follows that (A∗)∗ ⊆ U
whenever A∗ ⊆ U and U is preopen. Thus, A∗

is Ip-closed.

Theorem 3.9. Suppose (X, τ, I) is an ideal topological
space and A, B are subsets of X such that A ⊆ B ⊆
cl∗(A). If A is a Ip-closed set, then B is a Ip-closed
set.

Proof. Let A be an Ip-closed set. By Theorem 3.8, we
know that cl∗(A) − A has no nonempty preclosed set.
Since A ⊆ B ⊆ cl∗(A), we have that cl∗(B) − B ⊆
cl∗(A)−A and therefore, cl∗(B)−B has no nonempty
preclosed set. By applying Theorem 3.8 once more, we
can conclude that B is a Ip-closed set.

Theorem 3.10. Consider (X, τ, I) is an ideal
topological space, and let A be a subset of X. Then
A is Ip-closed if and only if it can be expressed as
A = F -N , where F is a ∗-closed set and N = A∗-A.

Proof. Suppose A is Ip-closed, we can apply Theorem
3.8 to conclude that N = A∗ − A does not contain any
nonempty preclosed set. Let F = cl∗(A), which is ∗-
closed, and consider F − N = cl∗(A) − (A∗ − A) =
(A ∪ A∗) ∩ (A∗ ∩ Ac)c = (A ∪ A∗) ∩ ((A∗)c ∪ A) =
(A ∪A∗) ∩ (A ∪ (A∗)c) = A ∪ (A∗ ∩ (A∗)c) = A.

Conversely, suppose that A = F − N , where F is
∗-closed and N contain no nonempty preclosed set.
Suppose there exists a preopen set U such that A ⊆
U . It follows that F − N ⊆ U which means that
F ∩ (X − U) ⊆ N . Since A ⊆ F and F ∗ ⊆ F , we
also have A∗ ⊆ F ∗. Therefore, we have A∗∩(X−U) ⊆
F ∗∩(X−U) ⊆ F∩(X−U) ⊆ N . By the hypothesis that
A∗ ∩ (X − U) is preclosed and contains no nonempty
set, we conclude that A∗ ∩ (X − U) = ∅. Therefore,
A∗ ⊆ U , which implies that A is Ip-closed.

Theorem 3.11. In an ideal topological space (X, τ, I).
Assume thatA is Ip-closed andB is ∗-closed inX, then
A ∩B is Ip-closed in X.

Proof. Assume that A and B are subsets of X and
that U is a preopen set in X containing A ∩ B. Then,
A ⊆ U ∪ (X − B). From the fact that A is Ip-closed in
X, it follows that eitherA∗ ⊆ U∪(X−B) orA∗∩B ⊆ U .
Then (A ∩ B)∗ ⊆ A∗ ∩ B∗ ⊆ A∗ ∩ B ⊆ U , since B is
∗-closed. Hence, A ∩B is Ip-closed in X.

Definition 3.4. Consider two ideal topological spaces,
denoted by (X, τ, I) and (Y, σ,J ). A map f :
(X, τ, I) → (Y, σ,J ) is called Ip-continuous map if
f−1(V ) is a Ip-closed set in (X, τ, I) for every closed
set V in (Y, σ,J ).

Example 3.12. We can define two ideal topological
spaces (X, τ, I) and (Y, σ,J ), where X = Y =
{a, b, c}, τ = {X, ∅, {c}, {b, c}}, I = {∅}, σ =
{Y, ∅, {c}} and J = {∅, {c}}. Consider the map f :
(X, τ, I) → (Y, σ,J ) by assigning f(a) = b, f(b) = a
and f(c) = c. Thus, f is a Ip-continuous map.

Lemma 3.13. Every continuous map in an ideal
topological space is a Ip-continuous map.

Proof. Suppose we have a continuous map f :
(X, τ, I)→ (Y, σ,J ) between ideal topological spaces,
along with a closed set V in Y , Since f is continuous,
f−1(V ) is closed in X and therefore Ip-closed in X,
which implies that f is a Ip-continuous map.

It is worth noting that the inverse of the lemma
mentioned above does not hold in general. An example
that demonstrates this fact is as follows:

42



Rakshana and Elango; Adv. Res., vol. 24, no. 4, pp. 38-46, 2023; Article no.AIR.97537

Example 3.14. The sets X and Y are defined as
{a, b, c}, and τ = {X, ∅, {b}}, I = {∅, {b}}, σ =
{Y, ∅, {b, c}}, and J = {∅}. We define a map f :
(X, τ, I) → (Y, σ,J ) by setting f(a) = c, f(b) = a,
f(c) = b. Although f is a Ip-continuous, it is not
continuous, since for a closed set {a} in Y , f−1({a}) =
{b} is not closed in X.

Lemma 3.15. Every Ip-continuous map in an ideal
topological space is a Ig-continuous map.

Proof. Assuming that f : (X, τ, I) → (Y, σ,J ) is a Ip-
continuous map between ideal topological spaces, and
V is a closed set in Y , Since f is Ip-continuous, then we
have that f−1(V ) is Ip-closed in X. Moreover, f−1(V )
is also Ig-closed in X by Lemma 3.2. Therefore, we
can conclude that f is a Ig-continuous map.

It is worth noting that the inverse of the lemma
mentioned above does not hold in general. An example
that demonstrates this fact is as follows:

Example 3.16. Let X be the set {a, b, c}, and let Y
be the same set as X. Let τ = {X, ∅, {b, c}}, I =
{∅, {a}}, σ = {Y, ∅, {a}, {b, c}}, and J = {∅}. The
map f : (X, τ, I) → (Y, σ,J ) by setting f(a) = b,
f(b) = a, f(c) = c. Following that, the Ig-closed
sets are X,∅,{a},{a, b},{a, c} and the Ip-closed sets
are X,∅,{a}. Since for a closed set {b, c} in Y ,
f−1({b, c}) = {a, c} is not a Ip-closed set in X. As a
result, f is a Ig-continuous map but not a Ip-continuous
map.

Lemma 3.17. Every Ip-continuous map in an ideal
topological space is a αIg-continuous map.

Proof. Assuming that f : (X, τ, I) → (Y, σ,J ) is a Ip-
continuous map between ideal topological spaces and
V is a closed set in Y . As f is Ip-continuous, we can
infer that f−1(V ) is Ip-closed in X. As per Lemma 3.4,
f−1(V ) is αIg-closed inX. This implies that f is a αIg-
continuous map.

It is worth noting that the inverse of the lemma
mentioned above does not hold in general. An example
that demonstrates this fact is as follows:

Example 3.18. Let X be the set {a, b, c}, and let Y
be the same set as X. Let τ = {X, ∅, {b}, {a, c}},
I = {∅, {b}}, σ = {Y, ∅, {a}}, and J = {∅}. The
map f : (X, τ, I) → (Y, σ,J ) by setting f(a) = a,
f(b) = c, f(c) = b. Following that, the αIg-closed sets
are X, ∅, {a}, {b}, {c}, {a, b}, {a, c}, {b, c} and the Ip-
closed sets are X, ∅, {b}, {a, c}. Since for a closed set

{b, c} in Y , f−1({b, c}) = {b, c} is not a Ip-closed set
in X. Therefore, f is a αIg-continuous map but not a
Ip-continuous map.

Lemma 3.19. Every Ip-continuous map in an ideal
topological space is a Irg-continuous map.

Proof. Suppose f : (X, τ, I) → (Y, σ,J ) be a Ip-
continuous map between the ideal topological spaces,
and let V be a closed set in Y . As f is Ip-continuous,
we know that f−1(V ) is a Ip-closed set in X with
respect to the ideal topology. By applying Lemma 3.6,
we conclude that f−1(V ) is a Irg-closed set in X.
Therefore, f is a Irg-continuous map.

It is worth noting that the inverse of the lemma
mentioned above does not hold in general. An example
that demonstrates this fact is as follows:

Example 3.20. The sets X and Y are defined as
{a, b, c}, τ = {X, ∅, {a}, {b}, {a, b}}, I = {∅, {c}},
σ = {Y, ∅, {b}, {a, b}} and J = {∅}. The map f :
(X, τ, I) → (Y, σ,J ) by setting f(a) = c, f(b) = a,
f(c) = b. Following that, the Irg-closed sets are X,
∅, {c}, {a, b}, {a, c}, {b, c} and the Ip-closed sets are
X, ∅, {c}, {a, c}, {b, c}. Since for a closed set {a, c}
in Y , f−1({a, c}) = {a, b} is not a Ip-closed set in
X. Therefore, f is a Irg-continuous map but not a Ip-
continuous map.

Remark 3.2. The composition of two Ip-continuous
maps may not be Ip-continuous in general. An example
illustrating this fact is as follows:

Example 3.21. Suppose that X = {a, b, c}, be with τ =
{X, ∅, {b}, {c}, {b, c}}, I = {∅, {c}}, let Y = {a, b, c}
be with σ = {Y, ∅, {a, c}, {b}}, J = {∅, {a}} and let
Z = {a, b, c} be with η = {Z, ∅, {b}, {c}, {a, c}, {b, c}},
K = {∅}. We can express the mappings of f :
(X, τ, I) → (Y, σ,J ) by setting f(a) = b, f(b) = c,
f(c) = a and g : (Y, σ,J ) → (Z, η,K) by setting
g(a) = a, g(b) = c, g(c) = b. We can conclude that
f and g are Ip-continuous maps, but their composition
g ◦ f is not a Ip-continuous map.

Definition 3.5. Consider two ideal topological spaces,
denoted by (X, τ, I) and (Y, σ,J ). A map f :
(X, τ, I) → (Y, σ,J ) is called Ip-irresolute if f−1(V )
is a Ip-closed set in (X, τ, I) for every Ip-closed set V
in (Y, σ,J ).

Example 3.22. Assume that X = Y = {a, b, c},
τ = {X, ∅, {b}, {a, b}, {b, c}}, I = {∅, {a}, {b}, {a, b}},
σ = {Y, ∅, {a}, {b}, {a, b}} and J = {∅, {c}}. The map
f : (X, τ, I) → (Y, σ,J ) by setting f(a) = c, f(b) = a
and f(c) = b. Thus, f is a Ip-irresolute map.
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Lemma 3.23. Every Ip-irresolute map in an ideal
topological space is a Ip-continuous map.

Proof. Assuming f : (X, τ, I) → (Y, σ,J ) is a Ip-
irresolute map and V is a closed set in (Y, σ,J ), it
follows that V is also a Ip-closed set. By the definition
of Ip-irresolute map, we can infer that f−1(V ) is a Ip-
closed set in (X, τ, I), which implies that f is a Ip-
continuous map.

It is worth noting that the inverse of the lemma
mentioned above does not hold in general. An example
that demonstrates this fact is as follows:

Example 3.24. Let X be the set {a, b, c}, and let Y
be the same set as X. Let τ = {X, ∅, {c}, {b, c}},
I = {∅}, σ = {Y, ∅, {c}}, and J = {∅, {c}}. The map
f : (X, τ, I) → (Y, σ,J ) by setting f(a) = b, f(b) = a,
f(c) = c. Thus, f is a Ip-continuous map, but it does
not satisfy the conditions for being Ip-irresolute

Definition 3.6. Consider two ideal topological spaces,
denoted by (X, τ, I) and (Y, σ,J ). A map f :
(X, τ, I) → (Y, σ,J ) is called strongly Ip-continuous
map if f−1(V ) is a closed set in (X, τ, I) for every Ip-
closed set V in (Y, σ,J ).

Example 3.25. Assume that X = Y = {a, b, c},
τ = {X, ∅, {a}, {b, c}}, I = {∅}, σ =
{Y, ∅, {a}, {a, b}, {a, c}}, and J = {∅, {a}}. Define
the map f : (X, τ, I) → (Y, σ,J ) by setting f(a) = b,
f(b) = c and f(c) = a. Thus, f is a strongly Ip-
continuous map.

Lemma 3.26. In an ideal topological space, every
continuous map is a strongly Ip-continuous map.

Proof. Suppose (X, τ, I) and (Y, σ,J ) are ideal
topological spaces, with f : (X, τ, I) → (Y, σ,J ) a
continuous map, and let V be a closed set in Y . Then,
V is a Ip-closed set in Y . Additionally, since f is
continuous, f−1(V ) is closed in X. Therefore, f is a
strongly Ip-continuous map.

It is worth noting that the inverse of the lemma
mentioned above does not hold in general. An example
that demonstrates this fact is as follows:

Example 3.27. Consider the sets X = Y =
{a, b, c}, τ = {X, ∅, {b}, {c}, {b, c}}, I = {∅}, σ =
{Y, ∅, {b}, {a, b}}, and J = {∅, {a}}. Let f : (X, τ, I)→
(Y, σ,J ) be defined as f(a) = a, f(b) = c, f(c) = b.
Then, f is a strongly Ip-continuous map but not a
continuous map.

Proposition 3.4. In an ideal topological space, the
composition of two strongly Ip-continuous maps is also
a strongly Ip-continuous map.

Proof. Suppose (X, τ, I), (Y, σ,J ), and (Z, η,K) are
ideal topological spaces, and let f : (X, τ, I) →
(Y, σ,J ) and g : (Y, σ,J ) → (Z, η,K) be a strongly
Ip-continuous map. Let V be a closed set in (Z, η,K),
which is also a Ip-closed set in (Z, η,K). Since g is a
strongly Ip-continuous map, g−1(V ) is a closed set in
(Y, σ,J ), and hence it is a Ip-closed set in (Y, σ,J ). By
the same reasoning, since f is a strongly Ip-continuous
map, f−1(g−1(V )) is a closed set in (X, τ, I), and
therefore, (g◦f)−1(V ) is a closed set in (X, τ, I). Thus,
g ◦ f is a strongly Ip-continuous map.

Theorem 3.28. Consider (X, τ, I), (Y, σ,J ) and
(Z, η,K) as ideal topological spaces and let f :
(X, τ, I) → (Y, σ,J ) and g : (Y, σ,J ) → (Z, η,K) be
two mappings.

1. If f is a Ip-continuous map and g is a continuous
map, then g ◦ f is a Ip-continuous map.

2. If f is a strongly Ip-continuous map and g is a
Ip-continuous map, then g ◦ f is a continuous
map.

3. If f and g are strongly Ip-continuous maps, then
g ◦ f is a Ip-irresolute map.

4. If f is a strongly Ip-continuous map and g is a
Ip-irresolute map, then g◦f is a continuous map.

5. If f and g are Ip-irresolute maps, then g ◦ f is a
Ip-irresolute map.

6. If f is a Ip-irresolute map and g is a continuous
map, then g ◦ f is a Ip-irresolute map.

7. If f is a Ip-irresolute map and g is a Ip-
continuous map, then g ◦ f is a Ip-continuous
map.

Proof. 1. Assuming that V is a closed set in
(Z, η,K), and since g is a continuous map, we
know that g−1(V ) is a closed set in (Y, σ,J ).
Furthermore, since f is a Ip-continuous map,
we have that f−1(g−1(V )) is a Ip-closed set in
(X, τ, I), which implies that (g ◦ f)−1(V ) is a Ip-
closed set in (X, τ, I). Consequently, we can
conclude that g ◦ f is a Ip-continuous map.

2. Suppose that V is a closed set in (Z, η,K),
and g is a Ip-continuous map. Thus, g−1(V )
is Ip-closed in (Y, σ,J ). Additionally, since f
is a strongly Ip-continuous map, we have that
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f−1(g−1(V )) is a closed set in (X, τ, I), which
implies that (g ◦ f)−1(V ) is a closed set in
(X, τ, I). Therefore, we can conclude that g ◦ f
is a continuous map.

3. Assuming that V be a closed set in (Z, η,K) then
it is a Ip-closed set in (Z, η,K). We have that
g is a strongly Ip-continuous map, g−1(V ) is a
closed set in (Y, σ,J ) then it is a Ip-closed set in
(Y, σ,J ). Now as f is a strongly Ip-continuous
map, we get f−1(g−1(V )) is a closed set in
(X, τ, I) then it is a Ip-closed set in (X, τ, I).
So (g ◦ f)−1(V ) is a Ip-closed set in (X, τ, I),
thus g ◦ f is a Ip-irresolute map.

4. Let V be a closed set in (Z, η,K) then it is a Ip-
closed set in (Z, η,K). Since g is a Ip-irresolute
map, g−1(V ) is a Ip-closed in (Y, σ,J ). Now
as f is a strongly Ip-continuous map, we get
f−1(g−1(V )) is a closed set in (X, τ, I). So
(g◦f)−1(V ) is a closed set in (X, τ, I), thus g◦f
is a continuous map.

5. Suppose V is a Ip-closed set in (Z, η,K). As g is
a Ip-irresolute map, we have that g−1(V ) is a Ip-
closed set in (Y, σ,J ). Similarly, since f is also
Ip-irresolute map, we have that f−1(g−1(V ))
is a Ip-closed set in (X, τ, I), implying that
(g ◦ f)−1(V ) is a Ip-closed set in (X, τ, I).
Therefore, g ◦ f is a Ip-irresolute map.

6. Let V be a closed set in (Z, η,K). Since
g is continuous, g−1(V ) is a closed set in
(Y, σ,J ). Since f is a Ip-irresolute map, we get
f−1(g−1(V )) is a Ip-closed set in (X, τ, I). That
is, (g◦f)−1(V ) is a Ip-closed set in (X, τ, I). So
g ◦ f is a Ip-irresolute map.

7. Suppose V is a closed set in (Z, η,K). As g
is a Ip-continuous map, g−1(V ) is a Ip-closed
set in (Y, σ,J ). But f is a Ip-irresolute map, we
have f−1(g−1(V )) is a Ip-closed set in (X, τ, I).
Which gives, (g ◦ f)−1(V ) is a Ip-closed set in
(X, τ, I). Therefore, g ◦ f is a Ip-continuous
map.

Definition 3.7. Consider two ideal topological spaces,
denoted by (X, τ, I) and (Y, σ,J ). A map f :
(X, τ, I) → (Y, σ,J ) is called Ip-closed map[22] if the
image of every closed set in X is a Ip-closed set in Y .

The authors of[22] establish the vital properties of
Ip-closed maps and their interconnections with other
generalized closed maps, including Ig-closed maps,

αIg-closed maps, and Irg-closed maps in ideal
topological spaces.

4 CONCLUSIONS

In this paper, we defined new class of generalized
closed sets called Ip-closed sets in ideal topological
spaces. We looked at the main characteristics of this
new class of generalized closed sets and compared
it to other classes of generalized closed sets that are
already exist in ideal topological spaces. By utilizing
these newly found Ip-closed sets, we discovered a Ip-
continuous map, a Ip-irresolute map, and a strongly
Ip-continuous map. In each segment, we took a look at
some of their most significant features. In future, we can
enrich the concept of generalized Ip-closed sets in ideal
topological spaces by extending it to fuzzy topological
spaces. Overall, the generalized Ip-closed set in ideal
topological spaces is likely to involve a combination of
theoretical developments, applications to other areas
of mathematics, and the construction of new examples
and counterexamples.

ACKNOWLEDGEMENT

The authors would like to express their sincere
appreciation to the reviewers for their thoughtful and
insightful comments, which helped to significantly
improve the quality of this manuscript. Their feedback
and suggestions were invaluable in refining our ideas
and arguments, and we are grateful for their time
and effort in reviewing our work. We also thank the
editor for their guidance and support throughout the
submission process. We would like to acknowledge
that this research was conducted independently of any
study sponsors, and the sponsors had no involvement.

COMPETING INTERESTS

Authors have declared that no competing interests exist.

REFERENCES

[1] Levine N. Generalized closed set in topology.
Rend. Circ.Math. Palermo. 1970;19:89-96.

45



Rakshana and Elango; Adv. Res., vol. 24, no. 4, pp. 38-46, 2023; Article no.AIR.97537

[2] Rajamani M, Indumathi V, Krishnaprakash S.
Iπg-closed sets and Iπg-continuity. Journal of
Advanced research in pure math. 2010:2(4):63-72.

[3] Vithyasangaran K, Elango P. Study of α∗-
Homeomorphisms by α∗-Closed Sets. Advances
in Research. 2019;19(3):1-6.

[4] Wadei AL-Omeri, Takashi Noiri T. AGI∗-sets,
BGI∗-sets and δβI-open sets in ideal topological
spaces. International Journal of Advances in
Mathematics. 2018;4:25-33.

[5] Khan M, Hamza M. Is∗g-closed sets in Ideal
Topological Spaces. Global Journal of Pure and
Applied Mathematics. 2011;7(1):89-99.

[6] Lellis Thivagar M, Santhini C. New approach of
ideal topological generalized closed sets. Bol. Soc.
Paran. Mat. 2013;31(2):191-204.

[7] Kuratowski K. Topology, Vol.I. Academic Press,
New York;1966.

[8] Vaidynathaswamy R. The localization theory in
set topology. Proc. Indian Acad. Sci. Math. Sci.
1945;20:51-61.

[9] Wadei AL-Omeri, Noiri T. I∗g-Closed Sets Via
Ideal Topological Spaces. Missouri J. Math. Sci.
2019;31(2):174-191.

[10] Wadei AL-Omeri, Noiri T. On almost e-I-
continuous functions. Demonstratio Mathematica.
2021;54(1):168-177.

[11] Wadei AL-Omeri, Noiri T. On semi∗-I-open
sets, pre∗-I-open sets and e-I-open sets in
ideal topological spaces. Boletim da Sociedade
Paranaense de Matemática. 2023;41:1-8.
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