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Abstract. The present paper is a retrospective review of the development of the 
approach to numerical modeling of radiation propagation in biological tissues, based on 
the use of finite difference methods for the solution of the radiative transfer equation 
(RTE) and its application to the problems of biomedical diagnostics. The advantage of 
finite difference methods is the possibility to obtain the solution of the direct problem of 
radiation propagation in turbid media, when the exact analytical solution is impossible. 
In turn, the possibility to solve the RTE opens wide perspectives for the solution of 
inverse problem and reconstruction of structural and functional characteristics of 
objects from the detected scattered radiation. We present a review of the finite 
difference methods applied to the solution of angiography problems and investigation of 
blood using optical biomedical diagnostic technologies. © 2017 Journal of Biomedical 
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1 Introduction 
The progress of modern optical biomedical diagnostics 
requires the development of models of probing radiation 
propagation in a biological object. In the radiative 
transfer theory, they distinguish between the direct 
problem, i.e., the calculation of the scattered intensity 
distribution basing on the object geometry and optical 
properties, and the inverse problem, i.e., the 
reconstruction of the optical and geometrical 
characteristics of the object from the measured scattered 
radiation. The solution of the inverse problem is the 
base of optical biomedical diagnostics. 

A specific feature of biological objects is their 
complex geometry, characterised by different optical 
inhomogeneities. The basic equation of the radiative 
transfer theory (RTE) generally has no analytical 
solution for arbitrary geometry. Since biotissues are 
mostly strong scattering media for the radiation of 
optical range, the diffusion approximation is commonly 
used for the RTE, describing the propagation of 
radiation [1]. In the diffusion approximation, the RTE 
has analytical solutions for directional and isotropic 
sources of light and for infinite or semi-infinite 
homogeneous media. However, the use of diffusion 
approximation suffers from a number of restrictions; in 

particular, it is hardly applicable at the distances from 
the source smaller than the transport length. For the 
arbitrary geometry the RTE in the diffusion 
approximation has also no analytical solution, however, 
the finite difference technique can be efficiently used 
for solving it [2]. Such approach has found wide 
applications in optical diffusion tomography, in 
particular, for the noninvasive diagnostics of breast 
cancer and functional diagnostics of human brain [2, 3]. 
An alternative approach is the numerical simulation 
using the stochastic Monte Carlo method [4]. This 
method is based on multiple calculation of random 
photon trajectories in the medium having the specified 
geometry and optical characteristics, followed by the 
statistical processing of the obtained results at the 
detection points [5, 6]. In particular, the Monte Carlo 
method was used to simulate the propagation of probing 
radiation in human head [6, 7] and laboratory animal 
[8]. The geometry obtained by MRT diagnostics can be 
used in this case as the initial data. However, both of the 
above approaches have their drawbacks. The numerical 
solution of RTE in the diffusion approximation does not 
provide sufficient accuracy near the source, and the 
Monte Carlo simulation is often accompanied by the 
statistical noise, the elimination of which requires high 
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computational expenses, which is not always 
acceptable, e.g., in solving inverse problems. In such 
cases, it is efficient to use finite-difference technique for 
solving RTE in its original form rather than in the 
diffusion approximation. The present paper presents a 
retrospective review of the approaches to the RTE 
solution by means of finite difference methods, 
including the cases of complex geometry [9-17]. The 
validation of approaches was based on the comparison 
of the results with those of Monte Carlo simulation. The 
developed approaches were used to solve the problems 
of angiography and optical diagnostics of blood. The 
finite difference methods can be also efficiently used to 
solve the direct problem in optical tomography [18]. 

2 Finite difference methods for solving the 
radiative transfer equation 

2.1 Problem statement 
The propagation of radiation from a pulsed source in a 
turbid medium is described by the linear integro-
differential transfer equation [12] 

1
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Here S0  is the source power, 

S0 = dt
0

∞

∫ d
!
Ω∫ d

!
r∫ Q(
!
r ,
!
Ω,t) ; 

δ is the Dirac delta function, providing the photon 
emission from the point 

!
r0  at the time moment t0; the 

function η(α) specifies the radiation cone 

η(a) = 0 for a < 0, η(a) = 1 for a ≥ 0;  

α is the opening angle of the source, measured from the 
cone axis defined by the vector 

!
rax , see Fig. 1. 
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Fig. 1 Geometry of the modelled source of photons. 

At the boundary, on which the radiation from the 
source is incident, the boundary condition for Eq. (1.1) 
is chosen as the total reflection condition. It is also 
assumed that the photons are free to escape from the 
calculation domain through the rest boundaries.  

2.2 Solution approach 
The source singularity makes it impossible to use the 
finite difference approximations directly for the solution 
of the considered problem. Therefore, the desired 
solution is presented as a sum of three functions 

Ψ(
!
r ,
!
Ω,t) =Φ0 (

!
r ,
!
Ω,t) + Φ1(

!
r ,
!
Ω,t) + Φ(

!
r ,
!
Ω,t),  (2.1) 

where the functions Φ0 (
!
r ,
!
Ω, t) , Φ1(

!
r ,
!
Ω, t)  describe the 

flux density of non-scattered and singly scattered 
photons, and the function Φ(

!
r ,
!
Ω, t)  describes the flux 

density of photons that undergo two or more scattering 
events. Substituting the representation (2.1) into Eq. 
(1.1) and using the additivity property of the transfer 
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equation, we arrive at the boundary problem for each 
component of the solution. 
For the non-scattered component Φ0 (

!
r ,
!
Ω, t)  

1
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For the singly scattered component Φ1(
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For the component allowing for two or more scattering 
events Φ(
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The solution of the problem (2.2) is found 
analytically using the technique of generalised 
functions. Similarly, the right-hand side ŜΦ0  in Eq. 
(2.3) and the solution of this equation are found. 

The solution of Eq. (2.4) has already no singularity 
and, therefore, is found using the integro-interpolational 
finite difference scheme. The system of finite-difference 
equations approximating Eq. (2.4) is solved using the 
iteration process for the collisions. The integrals (the 
operator S) in the right-hand side of Eq. (2.4) are 
replaced with quadrature sums. 

Note, that since the problem is non-stationary, great 
computational load is required for time intervals (steps). 
To reduce the computation time one can use parallel 
algorithms. The parallelisation of the calculations can be 
implemented by means of the widely used method of 
spatial subdomains. 

If the problem is stationary, then the first term in the 
left-hand side of Eqs. (1.1), (2.2)-(2.4) is absent, and the 
algorithm of solution corresponds to a single time step 
in the problem (1.1).  

3 Comparison of finite difference methods 
with Monte Carlo method 

The algorithm presented above was implemented in the 
M.V. Keldysh Institute of Applied Mathematics, 
Russian Academy of Sciences, in the form of the 
software package Raduga-5.1(P) for the stationary 
problem [9-11] and Raduga-5.2(P) for the non-
stationary one [12-15]. Ref. [11] presents the 
comparison of the spatial distribution of the scattered 
intensity calculated using the finite difference method 
and the Monte Carlo methods for the stationary problem 
(Fig. 2a, b). 
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Fig. 2 Scattered intensity versus the distance r from the 
source, experimentally measured in a biotissue phantom 
and calculated using the finite difference method 
(RADUGA-5.1(P) software), the Monte Carlo method, 
and the diffusion approximation within the ranges r = 0-
3 mm (а) and r= 0-20 mm (b).  

Fig. 2 shows that the results of Monte Carlo 
simulation and the solution of the transfer equation 
using the finite difference method agree well with the 
results of experiment in the biotissue model, whereas 
the solution of diffusion equation is unsatisfactory in the 
vicinity of the source (Fig. 2a), which gives rise to large 
errors in attempts to reconstruct the medium properties 
using the solution of RTE in the diffusion 
approximation.  

Besides that, at large distances from the source the 
Monte Carlo solution demonstrates oscillations (Fig. 
2,b), which are absent in the finite-difference solution of 
the RTE. These oscillations are due to insufficient 
number of photon trajectories contributing to the signal. 

The comparison of finite-difference and Monte 
Carlo solutions of a non-stationary problem was 
presented in Ref. [15]. Fig. 3 shows the results for a 
delta-pulse, backscattered by the medium, calculated 
using these methods. One can see good agreement of the 
results.  
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Fig. 3 Comparison of numerical simulations of the 
medium response to a delta-pulse from a 
monodirectional point source using the finite difference 
method (RADUGA-5.2(P) software) and the Monte 
Carlo method. 

To implement the finite difference method, 49 
processors 2хAMD Opteron 248 (2.2 GHz) were used; 
one calculation took 25 minutes. For the validation of 
the developed algorithm and assessment of its 
efficiency, the solution of the same problem was 
obtained using the Monte Carlo method with 109  
trajectories. The Monte Carlo calculation took 10 
minutes using 100 Intel Xeon processors (2.8 GHz), so 
that the both approaches required comparable 
computational time expenses. 

	

Fig. 4 Comparison of numerical simulations of the 
response of the medium, modelling human skin with the 
glucose content 500 mg/dl, to the delta-pulse from 
monodirectional point and conical (focused) radiation 
sources. 

One more advantage of the considered finite 
difference approach is the possibility to choose the light 
beam geometry. In most problems, they consider point 
monodirectional beams, and the solution for a beam 
with complex geometry in the case when all rays are 
similarly directed can be obtained, e.g., by the 
convolution of the solution for a monodirectional point 
beam with the beam function (see, e.g., [7]). However, 

such approach is not applicable to focused beams, since 
in this case the photons have different initial direction of 
propagation. In Refs. [12, 13] the finite difference 
solution of the non-stationary RTE was implemented for 
the conical-shaped beam. The results for the 
monodirectional beam and the conical one are compared 
in Fig. 4 [13]. 

4 Application of finite difference methods 
of solving RTE to the problems of optical 
biomedical diagnostics 

The main goal of Refs. [13, 15] was to use numerical 
simulation for studying the efficiency of time-resolved 
optical probing of skin aimed at the assessment of 
glucose content in blood. The typical responses for skin 
probing with a delta-pulse (the probing geometry is 
presented in Fig. 5a), the glucose concentration being 0 
and 500 mg/dl, are presented in Fig. 5b. It is shown that 
the difference in the maxima of the recorded pulses 
amounts to 13%, which is sufficient for in vitro 
measurements. However, for the in vivo probing this 
difference can be masked by the typical spread of the 
skin optical characteristics.  
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b	

Fig. 5 (а) Geometry of probing a homogeneous 
biotissue phantom aimed at the blood sugar 
measurement by means of the pulsed conical (focused) 
laser radiation and ring detector. (b) Numerical 
simulation of the human skin model response to the 
delta-pulse of conical (focused) light source. The curves 
correspond to the glucose content of 0 and 500 mg/dl. 
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In Refs. [16, 17] the results of numerical simulation 
using the Monte Carlo method and finite difference 
methods were used to develop an approach to the 
solution of inverse problem of blood vessels diagnostics 
with the application of a neuron network. Fig. 6a [16] 
schematically shows the biotissue phantom with vessels, 
and Fig. 6b illustrates the result of simulating the 
continuous-wave laser radiation, reflected from this 
phantom. It is worth nothing that the signal IV from the 
phantom with a vessel enters the denominator of the 
function F, shown in Fig. 6b, which provides a clearer 
result for the vascular diagnostics. 

	
a	

	
b	

Fig. 6 (a) Schematic top view of biotissue phantom with 
a branching blood vessel. The phantom thickness is 
20 mm, the blood vessel axis is at the depth 1 mm. (b) 
Surface distribution of the radiation intensity diffusely 
reflected from the considered phantom. The 2D 
distribution of F = ln(I0 / IV) is presented, where IV and 
I0 is the diffuse reflected signal from the phantom with a 
branching vessel and from a similar phantom without a 
vessel, respectively.  

The purpose of Ref. [17] was to develop an 
approach to the automated determination of the 
diameter and depth of location of blood vessel in the 
model biotissue. For this aim using the numerical 
methods, the signals of spatially resolved reflectometry 
were simulated for different positions and diameters of 
the vessel. The results were used as a learning sample 
for the neuron network with the number of neurons 
from 2 to 5, depending on the desired accuracy of 
reconstruction. It was shown that the relative error of 
determining the diameter and the location depth of the 
vessel by means of the neuron network does not exceed 
2% for the considered model of a cylindrical vessel in 
homogeneous medium.  

5 Conclusion 
The finite difference methods of solving the radiative 
transfer equation (RTE) provide an efficient tool for the 
solution of the problem of optical-range radiation 
propagation through biological tissues, which allows the 
solution of both direct and the inverse problem of 
optical diagnostics. The comparison of finite difference 
methods with Monte Carlo simulations (MC) showed 
good agreement of the obtained results, the finite 
difference methods providing smoother curves as 
compared to the MC method. The finite difference 
methods have been applied to the problems of optical 
biomedical diagnostics for the solution of both 
stationary and non-stationary RTE for different beam 
geometries. 
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