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A Comparative Study Of Ann For Predicting Nitrate
Concentration In Groundwater Wells In The Southern Area
Of Gaza Strip
Hossam Adel Zaqoota, Mazen Hamadab, and Shady Miqdadc

aEnvironment Quality Authority (Palestinian Authority), Gaza Strip, Palestine; bDepartment of
Chemistry, Faculty of Science, Al Azhar University, Gaza Strip, Palestine; cMaster of Science from
Institute of Water and Environment-Al Azhar University, Gaza Strip, Palestine

ABSTRACT
The main source of water in the Gaza Strip is the shallow
aquifer which is part of the coastal aquifer. The quality of the
groundwater is extremely deteriorated in terms of nitrates and
salinity. The Gaza Strip is mostly in catastrophic conditions that
desire imperative and great efforts to improve the water situa-
tion on conditions of both quality and quantity. In this study,
performance of two artificial networks was evaluated to deter-
mine which one would have more efficiency in predicting
nitrate concentrations of groundwater wells used for desalina-
tion purpose in the southern area of Gaza Strip. Multiple layer
perceptron (MLP) and radial basis function (RBF) neural net-
works are trained and developed with reference to seven
important variables including pH, EC, TDS, hardness, calcium,
magnesium, and abstraction rate. These variables are consid-
ered as inputs of the network. The data sets used in this study
consist of six months and collected from 15 groundwater wells
in Khan Younis and Rafah area. The network performance has
been tested with different data sets and the results showed
satisfactory performance. The prediction results of the MLP
neural network were found to be better than RBF. Prediction
results prove that neural network approach has good and wide
applicability for modeling nitrate in the groundwater wells of
Gaza Strip coastal aquifer. We hope that the established model
will help in assisting the local authorities in developing plans
and policies to improve the water quality in the Gaza Strip to
acceptable levels.

In the recent years, groundwater as one of the primary sources of drinking
water is being exposed to a gradually severe contamination. Some studies
have revealed that nitrate nitrogen (NO3-N) is the maximum common
groundwater contaminant (Ehteshami and Biglarijoo 2014). The nitrate in
drinking water can cause various types of cancer. Thus, the maximum
permissible concentration for drinking water was determined below 10
ppm of NO3-N in USA, or 45 ppm according to the reference of the
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World Health Organization (WHO) as reported by Ehteshami, Sefidkar
Langeroudi, and Tavassoli (2013).

The main source of water in Gaza Strip is the shallow aquifer which is part
of the coastal aquifer. The quality of the groundwater is enormously deterio-
rated in terms of nitrates and salinity (Al-Mahallawi et al. 2012). The Gaza
Strip is mostly in catastrophic conditions that desire imperative and grave
efforts to improve the water state on conditions of both quality and quantity.
The Gaza Strip is suffering from shrink of obtainable clean water owing to
the overpumping of the groundwater, which is the only resource for house-
hold uses. This crisis became more critical as a result of time due to seawater
intrusion in the direction of the coastal aquifer, adding up to the infiltration
of incompletely treated wastewater to the aquifer (Shomar et al. 2010). The
high level of salinity and nitrate in the water and other pollutants and its bad
health effect, as well as undesirable tastes are reasons to find out new supply
source such as the desalination and quality enhancement technology adding
together to their means. The concentration of chemical contaminants con-
sisting of nitrate and chloride have exceeded the standards suggested by
WHO (Al-Najar and Adeloyde 2005) from most of the municipal wells.
Nitrate is soluble and negatively charged and consequently has a high move-
ment and possible for loss from the unsaturated area by seepage process.
Increased nitrate concentrations in drinking water can cause methemoglobi-
naemia in infants and stomach cancer in adults (Hall et al. 2001). Nitrate is
the most common pollutant found in shallow aquifers due to both point and
nonpoint sources (Postma et al. 1991). The extensive use of fertilizers is
considered a main nonpoint source of the nitrate that leaches to groundwater
(Chowdary, Rao, and Sarma 2005). Many studies have shown high concen-
trations of nitrate in areas with septic tanks (Amade 1999; Cantor and Knox
1984; Keeney 1986; MacQuarrie, Sudicky, and Robertson 2001). In the Gaza
Strip, nitrate contamination of groundwater is caused by infiltration of
fertilizers and raw sewage. Owing to the critical shortage of water and the
poor quality of groundwater, desalination plants were established in the Gaza
Strip.

An artificial neural network (ANN) is a computational model designed
to mimic the human brain and nervous system. Contrasting many statisti-
cally based water quality models, which adopt that the relationships
between response parameters and prediction parameters are linear and
normally disseminated, ANNs can represent the nonlinear relationships
among the parameters that are distinguishing of ecosystems (Kuo et al.
2006; Maier, Morgan, and Chow 2004). In recent years, a number of studies
have focused on the use of ANN models for predicting river water quality
(Khuan, Hamzh, and Jailani 2002; Lee et al. 2003; Diamantopoulou,
Antonopoulos, and Papamichail 2005; Kuo et al. 2006; Najah et al. 2009;
Salami and Ehteshami 2015;, 2016; Ehteshami, Dolatabadi, and Tavassoli
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2016; Sarkar and Pandey 2015). The ANNs have been widely used in
various studies on surface water pollution control for predicting stream
nitrogen concentration (Lek, Maritxu, and Giraudel 1999), forecasting raw
water quality parameters, prediction of water quality parameters, water
quality management (Wen and Lee 1998), and identification of nonpoint
sources of microbial contamination (Zaheer and Cui 2003). Due to
increased agricultural activity which is necessary for enhanced food pro-
duction and also due to industrial activity, there is an increasing evidence
of nitrate pollution of groundwater (Prakasa Rao and Puttanna 2000). Very
little work has been done so far in building stochastic models to predict
nitrate concentration in groundwater using regression and neural networks.
Ray and Klindworth (2000) utilized ANNs to predict the pesticide and
nitrate contamination in rural private wells. They used depth to aquifer
materials from land surface, well depth and distance to cropland as input
parameters and concentration of pesticides or nitrates were the outputs.
Ramasamy et al. (2003) used regression and neural networks to model
nitrate concentration in groundwater. Almasri and Kaluarchchi (2005)
used modular neural networks (MNN) to simulate the nitrate concentration
in an agriculture-dominated aquifer. Those MNN simulations are further
analyzed and compared to obtain from a physically based fate and transport
model to evaluate the overall applicability of MNN. Yesilnacar et al. (2008)
predicted nitrate concentration in groundwater using four parameters of
temperature, electrical conductivity, groundwater level and pH as input
parameters in the ANN. The Levenberg–Marquardt (LM) algorithm was
selected as the best one within 12 back propagation (BP) algorithms and
optimal neuron number was determined as 25. Zare Abyaneh et al. (2010)
used ANN and linear regression (LR) methods to relate groundwater nitrate
concentration to other water quality parameter. Maedeh et al. (2013) used
ANN to predict total dissolved solids (TDSs) variations in groundwater of
Tehran Plain, Iran. Cordoba (2011) used multi linear regression and ANN
models for the evaluation and prediction of some drinking water quality
parameters within a water distribution system. Al-Mahallawi et al. (2012)
applied ANN technique as a new type of model to approximate the nitrate
contamination of the Gaza Strip coastal aquifer. A set of six variables for
139 sampled wells was used and that have a significant influence were
identified by using ANN model. Recently, one study has been conducted
to predict nitrate concentration in the ground water aquifer of Gaza Strip.
The ANN models were trained using water quality data from 22 municipal
wells in Gaza coastal aquifer, for the period 2000–2009 (Alagha et al. 2013).
It was expected that the ANN developed models can be used as a good
option instead of the conventional method that used previously for calcu-
lating the water quality index. ANNs as a tool are still not widely used in
the field of groundwater nitrate contamination prediction and forecasting.
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The aim of this paper was to study of ANN modeling to predict nitrate
concentration in 15 groundwater wells used for desalination purpose in the
southern area of Gaza Strip (Khan Younis and Rafah areas). Two types of
neural network models were used to measure the predictive performance
efficiencies of each network. However, the results from two different neural
network algorithms were compared and analyzed.

Material and methods

Study Area

The Gaza Strip is a narrow strip of land on the eastern coast of the
Mediterranean Sea. It is located in the southeastern coast of Palestine with
longitudes of [34º 20’’ and 34º 25’’ E] and Latitudes of [31º 16’’ and 31º 45’’ N].
The total area of Gaza Strip is about 365 km2 with approximately 42 km long
and between 6 and 12 kilometers wide in the south (Aish, Zaqoot, and
Abdeljawad 2015). In order to investigate the possibility of ANN technology
for predicting the nitrate concentration of underground water wells and have
a clear and better picture of water wells pollution in the coastal aquifer of
Gaza Strip, particularly in the southern area, Khan Younis and Rafah gover-
norates are selected as sampling sites for this study. The selected under-
ground water wells are shown in Figure 1.

Water Samples Collection and Analysis

The water samples were collected and analyzed using the international proto-
cols. A 500-ml and one liter bottles were used for collecting water samples. All
samples were refrigerated at a temperature of 1–4 ºC during transit to the
laboratory. The water samples were analyzed next day of collection. The
samples of water were collected once every month for a period of six months,
the selected parameters including: abstraction rate, TDS, total hardness, pH,
conductivity, calcium, magnesium, and nitrate. Samples were analyzed in
laboratories of Palestinian Ministry of Health (Public Health Lab-Gaza) and
Water and Environment institute at Al-Azhar University-Gaza, Palestine.
Electrical conductivity and pH were measured directly in the field using a
portable instrument called Electrochemistry made by CIBA-CORNING. The
abstraction rate is a measure of how much water can be withdrawn from the
well over a period of time and measured in m3/hour or m3/day. The abstraction
rate was calculated on monthly basis for each well. The nitrate concentrations
were measured by using ultraviolet spectrophotometer (company: Labomed–
model: Spectro UV-Vis Auto 2602). The spectrophotometer was adjusted to
wave length at 220 nm. The TDSs were measured by using the oven method.
EDTA titration method was used to measure total hardness in water samples.
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The calculation method was used to measure the presence of magnesium in
collected water samples using the following equation: Mg+2 ppm = {Hardness –
(2.5* Ca+2 ppm)}/4.12. For measuring calcium concentration in water, EDTA
titration method was used (APHA 2005). The equation used for calcium level
calculation is given as follows:

ppm as Ca+ 2 = V2 (EDTA) * Factor; Factor = (N * 1000/V1) * 40; N:
Normality of EDTA = 0.05N

Data Statistical Analysis

The water quality data is generated and being used to develop ANN pre-
dictive models to predict the water quality for assessing desalination plants

Figure 1. Map shows selected water wells in Khan Younis and Rafah.
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performance in Khanyouins and Rafah governorates in the Gaza Strip. The
generated data were entered as Microsoft Excel sheets, uploaded to Statistical
Package for Social Sciences (SPSS) and analyzed using min, max, mean,
standard deviation (SD), and coefficient of variation (CV) tools. In addition
the Pearson correlation coefficient (a measure of linear association) is used to
measure the linear association among the selected parameters in both train-
ing and testing data sets. The training and testing of the developed ANN
predictive models were carried out using neural network toolbox in the
language of technical computing (Matlab). Two types of feedforward net-
works are used. They are multilayer perceptron (MLP) and radial basis
function (RBF) neural networks.

ANN Theories

The ANN models are increasingly being used for forecasting or simulating
water resources variables because they are often capable to model complex
systems with unknown or difficult behavioral rules or underlying physical
processes. The ANN is a nonlinear modeling tool capable of handling a large
number of inputs (independent variables) to determine one or more outputs-
dependent variables (Fogelman et al. 2006). There are many types of neural
networks for various applications available in researches. The MLP is a
widely used ANN configuration and has been frequently applied in the
field of hydrological modeling (Leahy, Kiely, and Corcoran 2008). This
study evaluates the utility of MLP and RBF neural networks for estimating
nitrate concentrations in underground water wells.

The MLP is the simplest and therefore most commonly used neural net-
work architectures. Figure 2 provides an overview of the structure of this
network. The MLP consists of three layers of neurons: (1) an input layer; (2)
an output layer, and (3) intermediate (hidden) layer or layers. Each neuron
has a number of inputs (from outside the network or the previous layer) and
a number of outputs (leading to the subsequent layer or out of the network).
A neuron computes its output response based on the weighted sum of all its
inputs according to an activation function (Dawson et al. 2006). A simple
MLP was used in this study. It is a network with seven input variables, a
hidden layer with nine processing neurons, and one output variable nitrate.
For a simple regression analysis, the units in the input layer introduce
normalized or filtered values of each input variable into the network, then
these values are transferred to all units of the hidden layer multiplied by a
“weight” factor that is, in general, different for every connection, and its
magnitude characterizes the importance of some connections (Figure 2). In
the present study, several training algorithms (i.e., Resilient backpropagation,
LM, Variable learning rate backpropagation, Broyden Fletcher Goldfarb
Shanno (BFGS) Qusai-Newton, Bayesian rule and Gradient descent) were

732 H. A. ZAQOOT ET AL.



applied to train the MLP network. Two different transfer functions (i.e.,
Sigmoid and Tanh) were also used to obtain the best results with respect to
nonlinearity of this phenomenon. Finally, the best learning algorithm, activa-
tion function, and architecture of the network (the number of neurons in
hidden layers) were determined by trial and error.

RBF neural network is a type of feedforward neural network that learns by
using a supervised training method. One particular feature of RBF is that
account decreases or increases with distance from a center point.
Furthermore, it had seemed that RBF networks are able to estimate any
practical continuous function mapping with acceptable degree of precision
(Broomhead and Lowe 1988). The RBF network, which has three layers, can
look as a special class of multilayer feedforward networks. Each neuron in the
hidden layer employs a RBF, such as the Gaussian Kernel, as an activation
function. The output neurons implement a weighted sum of hidden neuron
outputs. The network is centered at the point specified by the weight vector
associated with the unit. Both the centers and the widths of these functions
are learnt from training patterns. Each output unit implements a linear
combination of these RBFs. The method for training RBF networks can be
made in two steps. The first step includes the determination of a proper set of
centers and widths. The second step involves with the determination of the
connection weights from the hidden layer to the output layer (Haykin 2007).
Definitely, choice of RBF network centers is the most critical problem in
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Figure 2. Architecture of MLP neural network model used in this study.
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constructing the network. These ought to be placed according to the diffi-
culties of the data to be predicted. A number of different approaches have
been suggested for the selection of proper RBF centers (Chen, Cowan, and
Grant 1991).

Data Processing and Training

At initial step of the groundwater wells nitrate concentrations prediction,
inlet water quality data of selected desalination plants in Khan Younis and
Rafah governorates were taken, over a period of 6 months beginning from
September 2013 to March 2014. A total of 15 wells are selected for the
prediction purpose. The main chosen water quality variables include: pH,
EC, TDS, total hardness, calcium, magnesium, nitrate, and abstraction rate.
Because the input and output variables have very different orders of magni-
tude, it is recommended to rescale the data. In this way, more reliable
predictions can be made. The normalization of data is usually done with
{0, 1} (Saen 2009). However, in this study the variables are rescaled to be
counted within the interval {0, 1} which could cover all differences of the
data sets used for the construction of ANN predictive models. The objective
of training process is to achieve accurate ANN model structure. In training
process, the choice of the transfer function, learning rate, momentum, exit
condition setting, root mean square error (RMSE), and validation of the
model are needed. Network training can be carried out using local or global
methods. Local methods include two classes: first-order and second-order
techniques. First-order techniques are based on a linear model (gradient
descent) while second-order techniques are based on a quadratic model
such as Newton’s method. In both cases, iterative method is used to reduce
the error task (Parisi, Ricci-Tersenghi, and Ruiz-Lorenzo 1996). The global
techniques have capability to escape local minima in the error surface and
also capable in finding optimal or near optimal weight measures. In the
stochastic gradient algorithms, the error function does advantage the net-
work to escape local minima in the error surface. During the training
process, these supportive factors are slowly separated (Hassoun 1995).

In the present study, training and testing of the networks were accom-
plished on Matlab version 7.11 Release 2010b, Mathworks, Inc. In Matlab,
the criteria used to evaluate the fitness of each potential solution are the
lowest cost achieved during the training run. To avoid over training, early
stopping technique was used in training (Erenturk and Erenturk 2007). This
method is done automatically in Matlab software. So that, as soon as over
training of ANN occur, then ANN training stops. The best MLP network was
trained by using the backpropagation incorporated with LM algorithm. The
tangent hyperbolic function was used as activation function in the hidden
layer neurons. The linear activation function is used in the output layer
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neurons. The RBF network was trained by using the backpropagation incor-
porated with the Orthogonal Least Squares algorithm and the Gaussian RBF
was used as activation function in the hidden layer. The linear activation
function is used in the output layer.

Results and Discussion

The basic statistics analysis for groundwater samples are listed in Table 1. All
values of pH for the groundwater wells were found to be within WHO and
Palestinian standards (PS), and the values ranged between 6.40 and 8.35 with
an average of 7.52. The EC, TDS, and nitrate concentration values (1277–
5730 μS/cm; 791.7–3552.6 mg/l; 49–394.8 mg/l) were found to be exceeding
the maximum concentrations allowed by WHO and PS for all water samples.
The values of total hardness were ranged between 208.80 and 840.18 mg/l,
where about 51% of the samples were found to be in compliance with WHO
and PS standards. The values of calcium were ranged between 30.30 and
170.40 mg/l, where about 63% of the samples were found to be within WHO
and PS. The values of magnesium were ranged between 21.50 and 125.81 mg/
l, with an average of 71.21 mg/l. There were about 55% of magnesium values
within WHO standards and about 80% within PS drinking water standards.
The monthly average of abstraction rate was found to be 330–52440 m3/
month. The statistical analysis of training and testing data sets showed that
nitrate concentration values are ranged from 55.38–394.78 mg/l for training
data set and from 49–387.37 mg/l for testing data set. The average value
among all selected wells used for desalination purpose to both training and
testing data sets is 220.66 and 199.38 mg/l, respectively.

The statistical study showed a negative strong correlation between nitrate
and pH for both training and testing data sets whereas r values found to be
−0.60 and −0.68, respectively. Moderate positive correlation found to be
between nitrate and hardness, calcium and magnesium for both training
and testing data sets, whereas the r values are found to be (0.48;0.52;0.40)
and (0.62;0.61;0.58), respectively. A positive close to moderate correlation is
found to be between nitrate and EC as well as TDS for both training and

Table 1. Descriptive statistics of the selected parameters.
Parameters Range Average SD CV

pH 6.40–8.35 7.52 0.299 0.04
EC (μS/cm) 1277–5730 3621 1159.52 0.32
TDS (mg/l) 791.7–3552.6 2245 718.905 0.32
Total Hardness (mg/l) 208.80–840.18 512.51 206.72 0.40
Calcium (mg/l) 30.30–170.40 87.64 41.42 0.47
Magnesium (mg/l) 21.50–125.81 71.21 27.73 0.39
Nitrate (mg/l) 49–394.8 215.70 104.70 0.49
Abstraction rate (m3/month) 330–52440 15099.53 17744.40 1.17
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testing data sets, whereas the r values are (0.20;0.20) and (0.25;0.25), respec-
tively. The correlation between nitrate and abstraction rate is found to be
positive and poor for both training and testing data sets, whereas the r values
are 0.13 and 0.18, respectively.

Because of the lack of theoretical foundations, training a neural network
requires a long trial and error process, experimenting different combinations
of learning rates, momentum terms, transfer functions, and network archi-
tectures. The determination of the learning rates and other network para-
meters is fundamental to train the network successfully. So as to overcome
this difficulty, LM algorithm is used in this work to reduce the arbitrary
nature of the determination of the training parameters, improving the train-
ing process, and, therefore, the predicting performance of the network. Using
the above-mentioned neural network design and software setting, training of
the models was performed. During training, the weights of the neural net-
work were adjusted in order to minimize the error between the network
output and the target value for all of the readings in the training set. To
ensure that the network does not over-fit the training data (by learning
patterns specific only to the training set), the performance of the network
on the validation set was periodically evaluated. When performance on the
validation set begins to degrade, training was stopped. For the nitrate ANN
model training and testing process, 69 readings (76% of the data set) were
used for training and 21 readings (24% of the data set) were used to test the
model performance. Seven scenarios are used to train MLP and RBF net-
works to choose the best model for predicting nitrate concentrations. The
used input parameters for the trained seven scenarios are shown in Table 2.

The MLP network training process started with using four neurons in
the hidden layer, then the numbers of neurons were increased, and at nine
neurons the performance of the developed network was good. The RBF
network training was satisfactory at 69 neurons in the hidden layer. The
best trained MLP and RBF networks performance is shown in Figures 3
and 4, respectively.

There are many statistical tools for model validation, but the principal
tools for most procedure modeling presentations include root mean square

Table 2. Different combination of input parameters in MLP and RBF neural
networks.
Model No. Input parameters

1 pH, EC, TDS, hardness, calcium, magnesium, and abstraction rate
2 pH, EC, TDS, calcium, magnesium, and abstraction rate
3 pH, EC, TDS, magnesium, and abstraction rate
4 pH, EC, TDS, and abstraction rate
5 pH, EC, and abstraction rate
6 pH and EC
7 EC
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error, correlation coefficient (r) and mean absolute error. Summary of these
statistical tools used in the developed models result for training and testing
data sets are given in Table 3. The results obtained from MLP used several
different algorithms revealed that the created MLP network which trained
with backpropagation incorporated with LM algorithm is the most fitting
model for predicting nitrate concentration in the groundwater wells used in
the desalination plants of Khan Younis and Rafah governorates in Gaza Strip.

Figure 3. Nitrates MLP training model performance.

Figure 4. Nitrates RBF model training performance.
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It can be seen from figures that the created MLP network performance is
better than the RBF network. It is also understood from the results presented
in Table 3, which shows the coefficient correlations between the observed
and predicted values of nitrate using MLP and RBF for training and testing
the developed models. It also can be seen from the table that the best
performance for validating models for testing data sets was achieved at
model-3. The correlations between the predicted nitrate and actual values
for MLP model training and testing are found to be strong and slightly better
than RBF model, whereas coefficient correlation values are [0.98–0.91] and
[0.95–0.90], respectively, as shown in Figures 5 and 6. The MLP and RBF
networks performances have been tested with different data sets and the
obtained results show good performance. The results obtained prove that the
developed MLP and RBF neural network models have high capability and
accuracy in predicting nitrate concentrations in the groundwater wells used
for desalination purpose in Khan Younis and Rafah of Gaza Strip as shown in
Table 4.

Figures 7 and 8 illustrate the comparison of training and testing MLP
model prediction results and RBF network with the real data. As can be
seen from both figures, the MLP network performance is better than
RBF network. Also we can see this result in Table 4, which shows the
root mean square error between the predicted values of nitrate using
both MLP (16.21–42.53 mg/l) and RBF (30.69–70.81 mg/l) for training
and testing the developed models. The satisfactory prediction results

Table 3. Evaluation of nitrate ANN developed models for testing data set.
Scenarios Input parameters RMSE r MAE

Model-1
MLP
RBF

pH, EC, TDS, TH, Ca2+, Mg2+, Abs
63.236
103.26

0.838
0.785

46.507
55.906

Model-2
MLP
RBF

pH, EC, TDS, Ca+2, Mg+2, Abs
59.817
105.32

0.825
0.638

46.007
58.500

Model-3
MLP
RBF

pH, EC, TDS, Mg+2, Abs
42.537
70.815

0.917
0.907

32.651
42.202

Model-4
MLP
RBF

pH, EC, TDS, Abs
47.196
86.655

0.889
0.725

35.666
54.232

Model-5
MLP
RBF

pH, EC, Abs
46.882
82.402

0.896
0.735

35.306
53.194

Model-6
MLP
RBF

pH, EC
77.251
94.095

0.694
0.612

50.167
56.357

Model-7
MLP
RBF

EC
72.900
71.423

0.710
0.733

53.125
55.066
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verify that the investigated approach is acceptable for predicting nitrate
contamination in the groundwater wells. As a first case study for pre-
dicting nitrate concentration in groundwater wells used for desalination
purpose in Khan Younis and Rafah governorates of Gaza Strip, the
simulation results prove that the ANNs are suitable and good for mod-
eling the nitrate contamination in the groundwater wells of Gaza Strip.

Figure 5. Nitrate MLP model regression for training and testing data.

Figure 6. Nitrate RBF model regression for training and testing data.

Table 4. Summary of best developed ANN models results for predicting nitrate.
Models Data set RMSE R MAE

MLP Training 16.21 0.98 12.52
Testing 42.53 0.91 32.65

RBF Training 30.69 0.95 23.32
Testing 70.81 0.90 42.20
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Further analysis about the sensitivity of the results against the input
factors are done on the results of ANN estimation for the best network.
Therefore, to determine the sensitivity and impact of different input
factors, MLP network with 1 hidden layer trained with backpropagation
incorporated with LM algorithm. First, 7 parameters of water quality
were used as a primary input of ANN. For the selection of the most
important ANN input parameters the periodic remove method was used.
Therefore, by eliminating any input parameter, the structure of opti-
mized ANN was run. With comparing neural network output by elim-
inating any input parameter, the network sensitivity to any input
parameter was calculated. Percentage of variation of estimated nitrate
concentration was determined for each index. The importance of each
input parameter is shown in Figure 9. Abstraction rate has the highest
influence on nitrate prediction. In contrast, TDS, TH, EC, pH, Mg2+,
and Ca+2 have the least effects.
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Figure 7. Comparison between MLP and RBF prediction results (training data set).
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It can be concluded that ANN structure with 7 parameters in some places
had a greater error than those of other structures, which means that increas-
ing the number of input parameters is not always effective (Zare Abyaneh,
Bayat Varkeshi, and Daneshkare Arasteh 2011).

Conclusion

Two types of neural networks; MLP neural network, and RBF were tested
for prediction of nitrate in groundwater wells from analyzed groundwater
nitrate concentration, pH, EC, TH, TDS, Ca, Mg, and abstraction rate as
input data. Since sample collection, analysis, and re-sampling are expen-
sive, only 90 samples from 15 wells were used for analyses in this study.
Among the various structures of MLP and RBF networks employed for
this study, MLP with five neurons in input layer and nine neurons in
hidden layer was found to be superior to other structures. The prediction
ability of the MLP neural network was found to be marginally better than
RBF. Figures 7 and 8 show the comparison between MLP and RBF in
process of validation step. It shows MLP could differentiate the trend
slightly more accurate than RBF. ANN models can predict nitrate con-
tamination in groundwater with acceptable accuracy. However, the MLP
model had a marginally better performance compared to the RBF by 36%.
The achieved result suggests that the use of more input parameters will
not necessarily lead to improvements of predicted results, but type of
input parameters is more important than its number. The developed ANN
model in this study may be used as a new predictive tool for assessing the
significances of a number of water resources management scenarios.
Utilizing the developed ANN model as a decision support tool could be
very useful for preparing water management policies and setting up a
suitable management scenario in the Gaza Strip.
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