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Abstract 
 
Aims: In this paper an approximate method for the solution of third-order differential equation 
with two and three point boundary condition is developed using iterative reproducing kernel 
method.  
Methods: The third order boundary value problem is converted into integro-differential equation 
of second order two point boundary value problem.  
The reproducing kernel method which takes the form of a convergent series with easily 
computable components is used for the solution of second order two point boundary value 
problem. 
Results: Six numerical examples are given to demonstrate the efficiency of the present method. 
The results obtained are better than the existing methods developed in [19,20,21,22,23]. 
Conclusions: In this paper, the solution of linear and nonlinear third order (two and three point) 
boundary value problem is determined. For the solution of third order three point boundary value 
problem reproducing kernel method is proposed and obtained a good accuracy in absolute errors. 
As the reproducing kernel method cannot solve the third  order  three-point boundary value 
problems directly, so the third order boundary value problem is converted to second order two 
point boundary value problem after absorbing the nonlocal condition at    . The method 
developed is compared with those developed by Li et al. [19], El-Salam et al. [20], Khan and 
Aziz [21], Li and Wu [22] and Wu and Li [23]. As observed in Example 3, 4, 5 and 6 that the 
method obtained in this paper is better than [19]-[23]. Results obtained using the scheme 
presented here show that the numerical scheme is very effective and convenient for third-order 
linear as well as nonlinear boundary value problem. 
Keywords: Approximate solution, gram-Schmidt orthogonal process, reproducing kernel space, 

integro-differential equation, nonlinear. 
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1 Introduction 
 
Boundary value problems manifest themselves in many branches of science. For example 
engineering, technology, control, optimization theory, draining and coating flows and various 
dynamic systems. In the solution of real-world problems ordinary differential equations (ODEs) 
are supposed to be basic tools. The problems containing multi-points boundary value developed in 
different fields of science such that applied mathematics, physics and engineering [1-4]. These 
multi-points boundary value problems basically originate in mathematical modeling. Two points 
boundary value problems are widely investigated in literature [5-7]. Graef et al. [8] developed the 
sufficient conditions for the existence and non-existence of positive solutions for three-point 
boundary value problems. Boundary value problems are encountered in many engineering fields 
including optimal control, beam deflections, heat flow, draining and coating flows, and various 
dynamic systems. In this paper third-order boundary value problems are concerned, such problems 
arise in the study of draining and coating flows.  
 
Accurate and fast numerical solution of boundary value problems is necessary in many important 
scientific and engineering applications, e.g. boundary layer theory, the study of stellar interiors, 
control and optimization theory, and flow networks in biology. Siddiqi and Ghazala [9] proposed 
a non-polynomial spline method for the numerical solution of the fifth-order linear special case 
boundary value problems. Siddiqi and Ghazala [10] proposed a sextic spline method for the 
numerical solution of the fifth order linear special case boundary value problems. Siddiqi et al. 
[11] developed quintic spline method for the numerical solutions of linear special case sixth-order 
boundary value problems. The theory of reproducing Kernel has wide applications in numerical 
analysis, differential equations, probability, statistics and many more [12,13]. A reproducing 
kernel Hilbert space is a useful framework for constructing approximate solutions of BVPs [14-
18].  
 
Consider the following third order boundary value problem: 
 
 
 
 
 
 
where                                           are continuous on [0, 1]. 
 
Remark: The solutions satisfy the conditions mentioned in [8]. 
 

2 The Conversion of Equation (1.1) 
 
Eq. (1.1) can be converted into an equivalent second order differential equation, which can easily 
be solved using RKM. 
 
Integrating on both sides of Eq. (1.1) from 1 to x, gives 
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where 

Substituting                                  into Eq. (2.1), yields 
 

 

 

 

 

where  

Assuming x=1 in Eq. (2.2) and                             leads to 

Hence Eq. (2.2) and Eq. (1.1) are equivalent. It may be noted that the solution of Eq. (2.2) gives 
the solution of Eq. (1.1). 
 

3 Reproducing Kernel Hilbert Space Method 
 
(i) The reproducing kernel space               is defined by                                                       

                        are absolutely continuous real valued functions in [0,1],                                      

The inner product and norm in              are given by 

          
            
 

Theorem 3.1 

 
The space              is a reproducing kernel Hilbert space. That is,                        and each fixed                      

                 , there exists                            s.t                                    and            is called the 

reproducing kernel function of space                   

The reproducing kernel function             is given by  
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 where 

 

 

 

Let                               , then clearly                                 is a linear bounded operator. 

Using the adjoint operator L*  of L and choose a countable dense subset                                     

and let                              , then            where     

Lemma 3.1 If            is dense in [0, 1], then                 is a complete system of                . 

Proof: For each fixed                   , let                                               which implies 

   .0))(()(),)(())((),( * ===ϕ ixi xLuxQxLuxLxu
i

  

Since           is dense in [0, 1], so Lu(x) = 0, which implies u ≡ 0 from the existence of  

Lemma 3.2 
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Since L* is conjugate operator, so    

      

 

To orthonormalize the sequence                 in the reproducing kernel space               Gram-Schmidt 

orthonormalization process can be used, as 

                             

(3.5) 

 

Theorem 3.2            is dense on [0, 1], and the solution of the Eq. (2.2) is unique, then the solution 
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Proof: Using lemma 3.1, it is clear that                  is the complete orthonormal basis of    

Notice that                                      , for each                        The exact solution can be determined 

as follows 

 

 

 

 

If u is the exact solution of Eq. (2.2) and Lu(x) = h(x,u(x)), then                               

 

 

The approximate solution obtained by the n-term intercept of the exact solution u, given by 

                                        

 

If the problem (2.2) is nonlinear, then approximate solution of the problem (2.2) can be obtained  

using the following iteration formula: 
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(ii)        is dense in [0,1]                                                                                               

(iii)                                                            then un in Eq. (3.7) converges to the exact solution u of 

the problem (2.2), where Ai are given by Eq. (3.8) and 

                           

Proof (i) From Eq. (3.7), it can be written as 
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Moreover, 

 

 

 

If n = 1, then 

 

If n = 2, then 

  

It is clear that 

 

Furthermore, it is easy to see by induction that               

 

 

Since,            is dense on interval [0, 1] and for any y [0, 1], there exists subsequence            such 

that 

 

so by the convergence of un  

Lu(x)=h(x,u(x)),                                                                                  (3.10) 

which shows that u is the solution of the problem (2.2) and 

                             

(3.11)  

where Ai are given by Eq. ( 3.8).  
 

4 Numerical Examples 
 
To illustrate the applicability and effectiveness of our method, six numerical examples are 
considered in this section. 
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Example 1 Consider the following third order three-point boundary value problem 
 

 

 

The exact solution of the problem (4.1) is u(x) = x sinx. The numerical results for n = 30, 50, 

100, are summarized in Table 1 and also illustrates by Figs 1 − 3. 
 

Table 1. The absolute errors when (n = 30,  50,  100) 
  

x Absolute  errors (n=30) Absolute  errors (n=50) Absolute  errors (n=100) 
0.0 0.000000 0.000000 0.000000 
0.1 1.64E-06 5.73E-07 1.40E-07 
0.2 6.59E-06 2.31E-06 5.65E-07 
0.3 1.48E-05 5.21E-06 1.27E-06 
0.4 2.63E-05 9.24E-06 2.26E-06 
0.5 4.09E-05 1.43E-05 3.51E-06 
0.6 5.83E-05 2.04E-05 5.01E-06 
0.7 7.81E-05 2.73E-05 6.71E-06 
0.8 1.01E-04 3.51E-05 8.58E-06 
0.9 1.23E-04 4.32E-05 1.05E-05 
1.0 1.47E-04 5.17E-05 1.26E-05 
 
Example 2 Consider the following third order three-point boundary value problem 
 
 
 
 
 

The exact solution of the problem (4.2) is                         .  The numerical results are given by 

Table 2 and illustrates by Figs. 4-6. 
 
Example 3 Consider the following third order linear boundary value problem [19, 20] 
 
 
 
 
 
 
The exact solution of the problem (4.3) is u(x) = x(1 – x)ex. The numerical results are given in 
Table 3. 

 
Example 4 Consider the following third order nonlinear boundary value problem [21] 
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The exact solution of the problem (4.4) is u(x) = l n(1 + x). The comparisons of the errors in 
absolute values between the method developed in this paper and that of [21] are shown in Table 4. 
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Fig. 1. |u-u30| 
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Fig. 2. |u-u50| 
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Fig. 3. |u-u100 | 
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Fig. 4. |u-u30| 
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Fig. 5. |u-u50|  
 

 
 

Fig 6: |u-u100| 
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Table  2. The numerical results when (n = 30,  50,  100) 
 

 

x Absolute  errors 
(n=30) 

Absolute  errors 
(n=50) 

Absolute  errors 
(n=100) 

0.0 0.000000 0.000000 0.000000 
0.1 6.29E-08 2.13E-08 5.17E-09 
0.2 4.86E-07 1.69E-07 4.13E-08 
0.3 1.63E-06 5.71E-07 1.39E-07 
0.4 3.88E-06 1.35E-06 3.32E-07 
0.5 7.62E-06 2.66E-06 6.53E-07 
0.6 1.32E-05 4.63E-06 1.13E-06 
0.7 2.12E-05 7.42E-06 1.81E-06 
0.8 3.19E-05 1.11E-05 2.73E-06 
0.9 4.60E-05 1.61E-05 3.94E-06 
1.0 6.39E-05 2.24E-05 5.48E-06 
 

Table 3. Comparison of numerical results 
 

x Absolute  errors (n=20)  
present method 

Absolute  errors 
(n=20) [19]    

Absolute  errors (n=80) 
present method 

Absolute  errors   
(n=80) [19] 

0.0 0 0 0 0.000000 
0.1 8.29E-07 1.52298 E-05 9.69E-10 5.80026E-07 
0.3 1.63E-07 7.42332E-05 8.67E-09 3.66544E-06 
0.4 4.88E-07 1.08810E-04 8.850E-09 5.67330E-06 
0.5 4.62E-07 1.40256E-04 2.52E-09 7.58382E-06 
0.7 8.12E-07 1.68693E-04 3.57E-09 9.54427E-06 
0.9 6.60E-07 9.78854E-05 7.56E-09 5.68883E-06 
1.0 0 1.50887E-15 0 1.57219E-15 

It is observed that for n=128 the maximum absolute error for the example 3 is 5.64E-11 and the maximum 
absolute error for n=128 for Example 3 obtained by the method [20] is 8.9762E-11, which shows that 

present method is better than [20]. 

 
Table 4. Comparison of numerical results 

  
x Absolute  errors (n=30) Absolute  errors (n=50) Khan and Aziz [21] 

 0.0 0.000000 0.000000    0.000000 
0.1 2.22E-06 3.22E-07    0.0000056 

 0.2 4.67E-06 4.75E-07    0.0000095 
 0.3 1.89E-06 1.94E-07   0.0000032 
 0.4 3.56E-06 6.28E-07   0.0000175 
 0.5 7.43E-07 8.11E-07   0.0000292 
 0.6 1.22E-06 4.38E-07   0.0000288 
 0.7 2.78E-06 3.86E-07   0.0000132 
 0.8 3.74E-06 7.77E-07   0.0000051 
 0.9 4.11E-06 2.35E-07 0 

1.0 0 0 0 

 
Example 5 Consider the following third order nonlinear boundary value problem [22] 
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The exact solution of the problem (4.5)   is 
 
The comparison of the errors in absolute values between the method developed in this paper and 
the method developed by Li and Wu [22] is shown in Table 5 and 6 for r=1, k=5 and 10. This 
comparison shows that the present method is effective.  

 
Table  5 Comparison of numerical results when k=5 

  
x Absolute errors     

  (n=10) [22] 
Present method  
errors (n=10) 

Absolute errors     
  (n=50) [22] 

Present method  
errors (n=50) 

0.0   2.81 E-05 7.66E-06    1.04E-06 8.37E-07 
0.1 2.26E-05 8.42E-06    8.44E-07 

 
3.39E-07 

0.2 1.41E-05 9.25E-06    5.27E-07 
 

9.16E-08 
0.3 7.32E-06 1.83E-06    2.74E-07 

 
7.22E-08 

0.4 2.95E-06 9.78E-06    1.10E-07 
 

7.86E-08 
0.6 2.95E-06 9.92E-06    1.10E-07 

 
6.35E-08 

0.7 7.32E-06 3.17E-06   2.74 E-07 6.26E-08 
0.8 1.41E-05 7.20E-06   5.24 E-07 

 
9.54E-08 

0.9 2.26E-05 8.35E-06    8.44E-07 3.37E-07 
1.0 2.81E-05 9.54E-06   1.04E-06 8.48E-07 
 

Table  6. Comparison of numerical results when k=10 
  
x Absolute errors     

  (n=10) [22] 
Present method  
errors (n=10) 

Absolute errors     
  (n=50) [22] 

Present method  
errors (n=50) 

0.0   1.14 E-05 8.66E-06    4.27 E-07 9.65E-08 
0.1 5.73 E-06 1.42E-06    1.60E-07 

 
7.47E-08 

0.2 8.65 E-07 1.25E-07    4.77E-08 
 

1.93E-08 
0.3 2.22 E-06 7.83E-07    8.80E-08 

 
2.16E-08 

0.4 1.39E-06 9.78E-07    5.40E-08 
 

1.24E-08 
0.6 1.39E-06 8.92E-07    5.40E-08 

 
8.69E-08 

0.7  2.22E-06 7.17E-07   8.80E-08 1.03E-08 
0.8 8.65E-07 2.20E-07   4.77 E-08 

 
1.10E-08 

0.9 5.72E-06 9.35E-07    1.60E-07 6.96E-08 
1.0 1.14E-05 7.54E-06   4.27E-07 8.32E-08 

 
 
Example 6 Consider the following third order nonlinear boundary value problem [23] 
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where                                                                           The exact solution of the problem (4.6) is 
 
 
It is observed that the maximum absolute error obtained by the method developed for n=11 is 
1.11E-07 and for n= 51 is 9.14E-09. It can easily be seen from the Fig. 1 of the paper [23] that our 
results are better than that of [23]. 
 

5 Conclusion 
 
In this paper, the solution of linear and nonlinear third order (two and three point) boundary 
value problem i s  determined. For the solution of  third order (two and three poin t) 
boundary value problem reproducing kernel method is proposed and obtained a good 
accuracy in absolute errors. As the  reproducing kernel method cannot solve the  third order 
three-point boundary value problems directly,  so the third  order boundary value problem is 
converted to second order two point boundary value problem after absorbing the nonlocal 
condition at    . The method developed is compared with those developed by Li et al. [19], El-
Salam et al. [20], Khan and Aziz [21], Li and Wu [22] and Wu and Li [23]. As observed in 
Example 3, 4, 5 and 6 that the results obtained in this paper are better than [19-23]. 
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