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Abstract

Aims: In this paper an approximate method for the solution ofi-order differential equatio
method.

of second order two point boundary value problem.

problem.

Results: Six numerical examples are given to demonstrate thdesftig of the present metho
The results obtained are better than the existing metteddoped in [19,20,21,22,23].

Conclusions: In this paper, the solution of linear and nonlinear toirder (two and three poin

problem reproducing kernel method is proposed and obtained a gnogd@cin absolute error

point boundary value problem after absorbing the nonlooalditon at @ . The metho

presented here show that the numerical scheme is viectieé and convenient for third-ord
linear as well as nonlinear boundary value problem.

with two and three point boundary condition is developed ugergtive reproducing kerng
Methods: The third order boundary value problem is converted into inteifferehtial equation

The reproducing kernel method which takes the form of a conversgries with easily
computable components is used for the solution of mbawder two point boundary value

boundary value problem is determined. For the solution of thiterdhree point boundary valu

As the reproducing kernel method cannot solve the third ottleee-point boundary valu
problems directly, so the third order boundary value prokikeconverted to second order ty

developed is compared with those developed by Li et al, El9%8lam et al. [20], Khan an
Aziz [21], Li and Wu [22] and Wu and Li [23]. As observed ixaBple 3, 4, 5 and 6 that th
method obtained in this paper is better than [19]-[23]. Resulitained using the scheme
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1 Introduction

Boundary value problems manifest themselves in many branchesience. For example
engineering, technology, control, optimization theory, drginimd coating flows and various
dynamic systems. In the solution of real-world praideordinary differential equations (ODES)
are supposed to be basic tools. The problems containing roirtsgoundary value developed in
different fields of science such that applied mathematicgsigh and engineering [1-4]. These
multi-points boundary value problems basically originatenathematical modeling. Two points
boundary value problems are widely investigated in literdewg. Graef et al. [8] developed the
sufficient conditions for the existence and non-existence of pes#blutions for three-point
boundary value problems. Boundary value problems are encatiitensany engineering fields
including optimal control, beam deflections, heat flow, mirg and coating flows, and various
dynamic systems. In this paper third-order boundary valaklems are concerned, such problems
arise in the study of draining and coating flows.

Accurate and fast numerical solution of boundary value problemecisssary in many important
scientific and engineering applications, e.g. boundary layeryhéhe study of stellar interiors,

control and optimization theory, and flow networksbiology. Siddigi and Ghazala [9] proposed
a non-polynomial spline method for the numerical solutionhef fifth-order linear special case
boundary value problems. Siddigi and Ghazala [10] propessdxtic spline method for the
numerical solution of the fifth order linear special chsendary value problems. Siddigi et al.
[11] developed quintic spline method for the numerical solutddrismear special case sixth-order
boundary value problems. The theory of reproducing Kemaslwide applications in numerical
analysis, differential equations, probability, statistaosd many more [12,13]. A reproducing
kernel Hilbert space is a useful framework for constngcpproximate solutions of BVPs [14-
18].

Consider the following third order boundary value problem
ao(x)u(3) () + al(x)u(z) () + a2(x)u(1) (9+a,00u(9) = f(xu(¥), 0sx<l ()
u© =a,u @ =a u@ Q=) +y

where 7700 (0),a (x),i = 01,23  aomtinuous on [0, 1].

Remark: The solutions satisfy the conditions mentioned in [8].

2 The Conversion of Equation (1.1)

Eqg. (1.1) can be converted into an equivalent second orderediifial equation, which can easily
be solved using RKM.

Integrating on both sides of Eq. (1.1) from X{@gives
2,(09u@ () - a, u® @) + (2, (9 + 3,V NP (9 + (2, P @ - 2, WD @) + ()P %)

-2 Y0+ a,00u00 - 3P0 -3V © + 2,0 - P -aP e +aP)

- a3(s)u(s))ds = g(x,u(x)), 0<sx<1, (2.2)

u(0) = al, u(l) 0) = al,
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where
Substitutingu® ) =au® () +y  irq. (2.1), yields
a,00u@ 0 -a, @ @ + (2,9 +2, Y 9 9 + a2, © -2, U )+ @, P

- W@ +a,00ux - (a,? 0 -2, 0 +a,m)u0 - @ 5 -2@ (9 +al (9

~ a,(s)u(s))ds = h(x,u(x), 0sxsl (22

u(0) = al,u(1> ©=a,

where h(x,u(x)) = g(x,u(x)) - 1(a," @) - a, ).
Assumingx=11in Eq. (2.2) an$(]) —a; (1)) 20, leddlsy® (1) = qu® () + y.

Hence Eq. (2.2) and Eqg. (1.1) are equivalent. Iy & noted that the solution of Eq. (2.2) gives
the solution of Eq. (1.1)

3 Reproducing Kernel Hilbert Space Method
(i) The reproducing kernel Spacwz3 [0y  &Breed by

\/\5[0,1] ={u/u,u(1),u(2) are absolutely continuoeal valued functions in [0,1], ® 0 |_2 [0,1]}.

The inner product and norm W [0,1] are gilg

(u(x),v(x)) = Zz u® v (0) + }u“)v“) dx, (3.1)
ul| = 4/(u,u), u,vOWw,[0,1]. (3.2)
lufl = /u, u) ’

Theorem 3.1

The spacs\, [01] s a reproducing kerneldttispace. That is; W2 [0.] and diel
x,yO[01], there exisRX(y) D\/\f[O;L] s.t <u(y), Rx(y)> =u(xX) ang(y) is called the
reproducing kernel function of spacw23 [0,1].

The reproducing kernel functidRy (y)  is givey

5 .
R, _(Y)=Xay, y < X,
1x i= I

Ry (y) = o (3.3)
sz(y) :Eob‘y \ y > X,
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where

Rux() = 55 ¥°(y° -5xy+103(y +3),

RZx(y) = Rly(x)

Let Lu(x) =h(x,u(x)) , then clearlyv’[01] - W;[01] is a linear boundee@tor.
Using the adjoint operatdr of L and choose a countable dense sub$et { X1 X5 100Xy O [0]]
and let ¢(y)=Q (y), iON ,theng, (x)=L'g,(x), where &, OW; [0,1].

Lemma311f{x}, isdensein [A], then{y, (x)}7, is a complete systemngf[0].
Proof: For each fixedDW23 [0,1] ,(et(x),wi (x)> =0,i =12,... which irgd

(U9, (L6,)09) =((L1)(9.Q, (9) = (Lu)(x) =0
Sincg x} 2, is dense in [0, 1], so(x) = 0, which impliesu = 0 from the existence of 1,
Lemma3.2 y,(x)= Lny(y)|y=xi .
Proof: As

Y, (X) =L¢, (X)
=(L'g,(y).R.(Y))

Since L is conjugate operator, So

v = <¢i ). LyRX(y)>: <RX_ . LyRX(y)>: Ly R 04) = LR gy )

To orthonormalize the sequengg (x)};,  héreproducing kernel spaw; [0,1], Gram-Sdthm

orthonormalization process can be used, as

@.(x) =i2/3.kwk(x), i=1,2,3,...
- (3.5)

Theorem 3.2 {X} %,is dense on [l], and the solution of the Eq. (2.2) is uniquertithe solution

is given as u(x) = ii[”ik f (X, UX ), (X).

i=1 k=1

183



British Journal of Mathematics & Computer Scien€2)3180-194, 2013

Proof: Using lemma 3.1, it is clear théw } -1 is the complete orthonormal basis (W23 [01].
Notice that<u(x),(pi (x)> = (x]. ) for eachu DW21 [01]. The exact soluiban be determined
as follows

u(x) =

u(x), @ (x) &, (x)

>
<u<x) Zﬁ.kwk )>wi ()

Bi(Lu(x), &, ()&, (%)

k=1

If uis the exact solution of Eq. (2.2) abd(x) = h(x,u(x)),then

Ms i ipe

Il
_

U() = 3> B (X U (X)

i=1 k=1

The approximate solution obtained by theerm intercept of the exact solutiangiven by

U () =3 S Buh(x, u(x, )& (x) (3.6)

i=1 k=1
If the problem (2.2) is nonlinear, then approximsaéution of the problem (2.2) can be obtained

using the following iteration formula:

Any fixed u, OW, [0,1],

n (3.7)
un(X) = z_ Ailzj_i(x)’
where
A = Bih(xg,ug(Xq))
2
Ay = 2 Boh(X,uy_g (X¢))
K (3.8)
An = X Brch(x Ui (60))
Theorem 3.3 If

0] ||u|| is bounded and
{x}o
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(ii) is dense in [0,1]
(iii) h(x,u(x)) OW;, [0,1]andu OW,’[0,1] them, in Eq. (3.7) converges to the exact soluticf
the problem (2.2), whew, are given by Eq. (3.8) and
u0) = X AT (4.
Proof (i) From Eq. (3.7), it can be writt_en as
Unap (X) =U, (X) + ALl (X).

Using the orthonormality condition ¢ (x)} -, yields

1
[ =l + Al = 5.
"

YA <w

i=1
From boundedness tﬂﬂn" gives z A <o ie{A}O L2,i =12,...
i=1

For m>n, (um - um—l) U (um—l _Um—z) U (un+1 _un) leads to

"um _un"2 :"um “Umpg tUpg ~Upp ot lpy _un"2

= “um _um—1"2+"um—1 _um—2||2 +---+" Up+y —Up

= S (A)2 -0 (nm-0)

i=n+l

Considering the completenesswtz3 [0,1] there existy DW23 [0,1], such that

Un - uU,Nn - o
(ii) Using (i) of Theorem 3.3, converge uniformly ta. On taking limits in Eq. (3.7), it follows

that u(x) = zl A

It may be noted that
Lu(x;) = §A<Lﬁ (X),¢5j (X)>
-£a (B9, )

=Y A <wi (00, (x)>

i=1

185



British Journal of Mathematics & Computer Scien¢2)3180-194, 2013

Moreover,
%an Lu(x;) = ZlA <lﬁi (%), Zlﬁi,-l//j (X)>
1= 1= =
=2 A (7,000 (0) = A,
If n=1,then
Lu(x;) = h(x;, uy (X))
If n=2,then

BorLu(x;) + BooLu(Xy) = Bo1h(%, Uy (%)) + Booh(X5, Uy (X,))
It is clear that
Lu(x,) = h(xz,ul(xz))

Furthermore, it is easy to see by induction that

Lu(xj):h(xj,uj_l(xj)) (3.9)

Since{ x} i°°:1 is dense on interval [0, 1] amdanyy<[0, 1], there exists subsequer{oenj} such

that an - Y,y ->®

so by the convergence of
Lu(x)=h(x,u(x)), (3.10)
which shows thati is the solution of the problem (2.2) and
0, (0= Y A (4,
- (3.11)

whereA; are given by Eq. ( 3.8).
4 Numerical Examples

To illustrate the applicability and effectivenest aur method, six numerical examples are
considered in this section.
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Example 1 Consider the following third ordethree-mint boundaryvalue problem

u®(x)+u®(x) +u®(x) = 2cosx - 2sin x - xsin x, 0<x<1

1) 1 (4.2)
u(0 :O’u(l) 0 :O’u(l) 1 :u(l)(fjﬁ-—_
©) ©) € >t

The exact solution of the problem (4.1)uéx) = x sinx. The numerical results for n = 30, 50,
100, are summarized in Table 1 and also illustriageBigs 1 - 3.

Table 1. The absolute errorswhen (n = 30, 50, 100)

X Absolute errors (n=30) Absolute errors (n=50) Absolute errors (n=100)
0.0 0.00000! 0.00000t 0.00000t
0.1 1.64E-06 5.73E-07 1.40E-07
0.2 6.59E-06 2.31E-06 5.65E-07
0.3 1.48E-05 5.21E-06 1.27E-06
0.4 2.63E-05 9.24E-06 2.26E-06
0.5 4.09E-05 1.43E-05 3.51E-06
0.6 5.83E-05 2.04E-05 5.01E-06
0.7 7.81E-05 2.73E-05 6.71E-06
0.8 1.01E-04 3.51E-05 8.58E-06
0.9 1.23E-04 4.32E-05 1.05E-05
1.0 1.47E-04 5.17E-05 1.26E-05

Example 2 Consider the following third ordethree-mint boundaryvalue problem

u®x) + xu®(x) = -6x% + 3x— 6 0sx<1

4.2
U(O):O,U(l)(0)=0,u(l)(l):u(l)(lj+3_ (4.2)
2 4
The exact solution of the problem (4.2) ig(x) = §x2 —x3 The numerical results are given by
2

Table2 and illustrates by Figs. 4-6.

Example 3 Consider the following third ordelinear boundaryvalue problem [19, 20]

u(B)(X)_Xu(X) :(X3_2X2 —5X_3)ex' 0< XSJ} (43)

u@@ =0,u®© =1u®@ = -e

The exact solution of the problem (4.3)i6) = x(1 —x)€". The numerical results are given in
Table3.

Example 4 Consider the following third order nonlinear boundealue problem [21]
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u®(x) +2e7™ = 401+ x) 2, 0<x<1

u()=0,u®©0) =1 u® @)= % (4.4)

The exact solution of the problem (4.4)ué) = In(1 + x). The comparisons of the errors in
absolute values between the method developedsmpéper and that of [21] are shown in Table 4.
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Table 2. The numerical resultswhen (n =30, 50, 100)

X Absolute errors Absolute errors Absolute errors
(n=30) (n=50) (n=100)
0.0 0.00000! 0.00000! 0.00000!
0.1 6.29E-08 2.13E-08 5.17E-09
0.2 4.86E-07 1.69E-07 4,13E-08
0.3 1.63E-06 5.71E-07 1.39E-07
0.4 3.88E-06 1.35E-06 3.32E-07
0.5 7.62E-06 2.66E-06 6.53E-07
0.6 1.32E-05 4.63E-06 1.13E-06
0.7 2.12E-05 7.42E-06 1.81E-06
0.8 3.19E-05 1.11E-05 2.73E-06
0.9 4.60E-05 1.61E-05 3.94E-06
1.0 6.39E-05 2.24E-05 5.48E-06

Table 3. Comparison of numerical results

X Absolute errors(n=20) Absolute errors Absolute errors(n=80) Absolute errors

present method (n=20) [19] present method (n=80) [19]
0C O 0 0 0.00000t
0.1 8.29E-07 1.52298 [-05 9.69E-10 5.80026t-07
0.2 1.63E-07 7.42332F-05 8.67E-09 3.66544F-06
0.4 4.88E-07 1.08810-04 8.850E-09 5.67330L-06
0.5 4.62E-07 1.40256F-04 2.52E-09 7.58382I-06
0.7 8.12E-07 1.68693F-04 3.57E-09 9.54427t-06
0.¢ 6.60E-07 9.78854-05 7.56E-09 5.68883I-06
1.C 0 1.50887F-15 0 1.57219k-15

It is observed that for n=128 the maximum absoduter for the example 3 is 5.6411 and the maximum
absolute error for n=128 for Example 3 obtainedtbg method [20] is 8.9762E-11, which shows that
present method is better than [20].

Table 4. Comparison of numerical results

X Absolute errors(n=30) Absolute errors(n=50) Khan and Aziz [21]
0.C 0.00000t 0.00000t 0.00000t
0.1 2.22E-06 3.22E-07 0.000005!
0.2 4.67E-06 4.75E-07 0.000009!
0.2 1.89E-06 1.94E-07 0.000003:
0.4 3.56E-06 6.28E-07 0.000017!
0.t 7.43E-07 8.11E-07 0.000029:
0.€ 1.22E-06 4.38E-07 0.000028:
0.7 2.78E-06 3.86E-07 0.000013:
0.8 3.74E-06 7.77E-07 0.000005.
0.6 4.11E-06 2.35E-07 0
1.C 0 0 0

Example 5 Consider the following third order nonlinear boundealue problem [22]
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The exact solution of the problem (4.5) is u(x) =

u®(x)—ku®(x)+r =0,

u@j =0,u®@©)=0,u®®

O<x<1

=0.

45)

r[k(Zx —1) - 2sinhkx) + 2coshkx) tanl‘[;)]

2k?®

The comparison of the errors in absolute valuewdxt the method developed in this paper and
the method developed by Li and Wu [22] is showTable 5 and 6 for=1, k=5 and10. This
comparison shows that the present method is eféecti

Table 5 Comparison of numerical resultswhen k=5

X Absoluteerrors Present method  Absoluteerrors Present method

(n=10) [22] errors (n=10) (n=50) [22] errors (n=50)
0.C 2.81 E-05 7.66E-06 1.04E-06 8.37E-07
0.1 2.26E-05 8.42E-06 8.44E-07 3.39E-07
0.2 1.41E-05 9.25E-06 5.27E-07 9.16E-08
0.3 7.32E-06 1.83E-06 2.74E-07 7.22E-08
0.4 2.95E-06 9.78E-06 1.10E-07 7.86E-08
0.€ 2.95E-06 9.92E-06 1.10E-07 6.35E-08
0.7 7.32E-06 3.17E-06 2.74 E-07 6.26E-08
0.8 1.41E-05 7.20E-06 5.24 E-07 9.54E-08
0.€ 2.26E-05 8.35E-06 8.44E-07 3.37E-07
1.C 2.81E-05 9.54E-06 1.04E-06 8.48E-07

Table 6. Comparison of numerical results when k=10
X Absoluteerrors Present method  Absoluteerrors Present method
(n=10) [22] errors (n=10) (n=50) [22] errors (n=50)

0.C 1.14 E-05 8.66E-06 4.27 E-07 9.65E-08
0.1 5.73E-06 1.42E-06 1.60E-07 7.47E-08
0.2 8.65 E-07 1.25E-07 4.77E-08 1.93E-08
0.3 2.22 E-06 7.83E-07 8.80E-08 2.16E-08
04 1.39E-06 9.78E-07 5.40E-08 1.24E-08
0.6 1.39E-06 8.92E-07 5.40E-08 8.69E-08
0.7 2.22E-06 7.17E-07 8.80E-08 1.03E-08
0.8 8.65E-07 2.20E-07 4.77 E-08 1.10E-08
0.9 5.72E-06 9.35E-07 1.60E-07 6.96E-08
1.0 1.14E-05 7.54E-06 4.27E-07 8.32E-08

Example 6 Consider the following third order nonlinear boundealue problem [23]

X

u®(x) - e’ u®@ (x) - sin v/ xe*u(x) = f (x),

2
1

u(0) =0, u(zj =0,u@@=0.

O<x<1l

(4.6)

191



British Journal of Mathematics & Computer Scien€2)3180-194, 2013

where f (x) :6+e§ (3x—g)—exx(1—3x+2x2)sin\/2 The exact solutiontiog problem (4.6) is
u(x) = x(x—%)(x—l).

It is observed that the maximum absolute errorinbth by the method developed for11 is
1.11E-07 and fon= 51is 9.14E-09. It can easily be seen from the Figf. the paper [23] that our
results are better than that of [23].

5 Conclusion

In this paper, the solution of linear and nonlindaird order (two and threpoint) boundary
value problem is detarined. For the solution of third order (two and three pub)i
boundary value problem reproducing kernel method is proposed obtained a good
accuracy in absolute errors. As the reproducingietemethod cannot solve the third order
three-wint boundaryvalue problems directly, siine third orderboundaryvalue problem is
converted to second order two poinbundary value problem after absorbing the nonlocal
condition ate . The method developed is compavitd those developed by Li et 4119, El-
Salam et al. [20], Khan and Aziz [21], Li and WW]2and Wu and Li[23]. As observed in
Example 3, 4, 5 and 6 that the results obtainebignpaper are better thf9-23].
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