
British Journal of Mathematics & Computer Science
3(2): 164-179, 2013

SCIENCEDOMAIN international
www.sciencedomain.org

On Removable Sets for Generated Elliptic Equations

T.S. Gadjiev∗1 and N.Q.Bayramova1

1Institute of Mathematics and Mechanics of NAS of Azerbaijan,
B.Vahabzade 9, AZ 1141, Baku, Azerbaijan

Research Article

Received: 31 October 2012
Accepted: 06 February 2013

Published: 29 March 2013

Abstract
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1 Introduction

The questions of compact removability for Laplace equation is studied by [1]. The uniform elliptic
equation of the second order of divergent structure is studied by [2]. The compact removability for
elliptic and parabolic equations of nondivergent structure is considered by [3], [4]. The removability
condition of compact in the space of continuous functions are constructed in the papers of [5], [6]. The
different questions of qualitative properties of solutions of uniformly degenerated elliptic equations is
studied by [7]. Uniform elliptic operator of the second order of divergent structure is considered in the
paper [8].

Let En be n dimensional Euclidean space of the points x = (x1, ..., xn). Denote by R > 0 for
BR
(
x0R
)

the ball
{
x :
∣∣x− x0∣∣ < R

}
, and by QRT

(
x0R
)

the cylinder BR
(
x0
)
∪ (0, T ). Further let for

x0 ∈ En, R > 0 and k > 0 εr,k
(
x0
)

be an ellipsoid

{
x :

n∑
i=1

(
xi − x0i

)2
Rαi

< (kR)2
}

. Let D be a

bounded domain in En with the sufficiently smooth boundary of domain ∂D, 0 ∈ D. ε is a such king
of ellipsoid that D ⊂ ε, B (ε) is a set of all functions, satisfying in ε the uniform Lipschitz condition
and having zero near the ∂ε.

Denote by α and (α1, ..., αn) the vector 〈α〉 = α1, ..., αn. Condition on αi is given below.
Denote by W 1

2,α (D) the Banach space of the functions u (x) given on D with the finite norm

‖u‖W1
2,α(D) =

∫
D

(
u2 +

n∑
i=1

λi (x)u
2
i

)
dx

1/2

,
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where

ui =
∂u

∂xi
, i = 1, .., n. λi (x) =

(
|x|λ

)αi , |x|α =

n∑
i=1

|xi|
2

2+αi ,

0 ≤ αi <
2

n− 1
) (1.1)

Further, let
◦
W

1

2,α (D) be a degenerated set of all functions from C∞0 (D) by the norm of the space
W 1

2,α (D). Denote byM (D) the set of all bounded in D functions.
Let E ⊂ D be some compact. Denote by AE (D) the totality of all functions u (x) ∈ C∞

(
D
)
,

such that u (x) = 0 at some neighbourhood of the compact E.
The compact E is called the removable relative to the first boundary value problem for the elliptic

operator L in the spaceM (D), if all generalized solution of the equation Lu = 0 in D \E , u |∂D\E=

0, u (x) ∈M (D), then u(x) ≡ 0 in D. We’ll say that the function u (x) ∈
◦
W

1

2,α (ε) is non-negative on

the set H ⊂ ε, in the sense of
◦
W

1

2,α (ε), if there exists the sequence of the functions
{
u(m) (x)

}
,m =

1, 2, .., such that um (x) ∈ B (ε) , um (x) ≥ 0 for x ∈ H and lim
m→∞

∥∥u(m) − u
∥∥
W1

2,α(ε)
= 0.

The function u (x) ∈ W 1
2,α (D) is non-negative on ∂D ”in the sense of space” W 1

2,α (D), if there
exists the sequence of the functions {um (x)} ,m = 1, 2, .., such, that u(m) (x) ∈ C1 (D) , um (x) ≥
0 for x ∈ ∂D and lim

m→∞

∥∥u(m) − u
∥∥
W1

2,α(ε)
= 0. It is easy to determine the inequalities u (x) ≥

const, u (x) ≥ v (x) , u (x) ≤ 0, and also equality u (x) = 1 on the set H in the sense of
◦
W

1

2,α (ε), if

at the same time u (x) ≥ 1 and u (x) ≤ 1 on H, in the sense of
◦
W

1

2,α (ε).
Let ω (x) be a measurable function in D, finite and positive for a.e. x ∈ D. Denote by Lp,ω (D)

the Banach space of the functions given on D, with the norm

‖u‖Lp,ω(D) =

∫
D

(ω (x))p/2 |u|p dx

1/p

, 1 < p <∞.

Let W 1
p,α (D) be a Banach space of the functions given on u (x), with the finite norm D.

‖u‖W1
p,α(D) =

∫
D

(
|u|p +

n∑
i=1

(λi (x))
p/2 |ui|p

)
dx

1/p

, 1 < p <∞

Analogously to
◦
W

1

2,α (D), it is introduced the subspace
◦
W

1

p,α (D) for 1 < p < ∞. The space,

conjugated to
◦
W

1

p,α (D) we’ll denote by
∗
W

1

p,α (D).
We’ll consider the elliptic operator in the bounded domain D ⊂ En

L =

n∑
i,j=1

∂

∂xi

(
aij (x)

∂

∂xj

)
In assumption, that ‖aij (x)‖ is a real symmetric matrix with measurable in D elements, moreover for
all ξ = (ξ1, ..., ξn) ∈ En and x ∈ D the condition

γ

n∑
i=1

λi (x) ξ
2
i ≤

n∑
i,j=1

aij (x) ξiξj ≤ γ−1
n∑
i=1

λi (x) ξ
2
i (1.2)

is fulfilled. Here γ ∈ (0, 1] is a constant.
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The function u (x) ∈W 1
2,α (D) is called the generalized solution of the equation Lu = f (x) in D,

if for any function η (x) ∈
◦
W

1

2,α (D) the integral identity∫
D

n∑
i,j=1

aij (x)uxiηxjdx =

∫
D

fηdx (1.3)

is fulfilled.
Here f (x) is a given function from L2 (D).
Let E ⊂ D be some compact. The function u (x) ∈ W 1

2,α (D \E ) is called a generalized solution
of the equation Lu = f (x) inD \E , u(x) = 0 on ∂D, if integral identity (1.3) is fulfilled for any function
η (x) ∈ AE (D).

We’ll assume that the coefficients of the operator L are continued in En \D with conditions (1.1),
(1.2). For this, it is enough to assume that aij (x) = δijλi (x) for x ∈ En \D , i, j = 1, .., n, where δij
is a Croneker symbol.

Let h (x) ∈ W 1
2,α (D) , f0 (x) ∈ h2 (D) , f i (x) ∈ L2,λ−1 (D) , i = 1, 2, .., n, are given functions.

Let’s consider the first boundary value problem

Lu = f0 (x) +

n∑
i=1

∂f i (x)

∂xi
, x ∈ D (1.4)

(u (x)− h (x)) ∈
◦
W

1

2,α (D) (1.5)

The function u (x) ∈W 1
2,α (D) we’ll call a generalized solution of problem (1.4)-(1.5) if for any function

η (x) ∈
◦
W

1

2,α (D) the integral identity∫
D

n∑
i,j=1

aij (x)uxiηxjdx =

∫
D

(
−f0η +

n∑
i=1

f iηxi

)
dx

is fulfilled.
Our aim is to get the necessary and sufficient condition of removability of the compact E.

2 Preliminaries Statements
At first, we introduce some auxiliary statements.

Lemma 2.1. If relative to the coefficients of the operator L, conditions (1.1), (1.2) be fulfilled, then
the first boundary value problem (1.4)-(1.5) has a unique generalized solution u (x) at any h (x) ∈
W 1

2,α (D) , f0 (x) ∈ h2 (D) , f i (x) ∈ L
2,λ−1

i
(D) , i = 1, 2, .., n,. At this there exists P0 (α, n) such

that, if p > p0, h (x) ∈ W 1
p,α (D) , f0 (x) ∈ hp (D) , f i (x) ∈ L

2,λ−1
i

(D) , i = 1, 2, .., n, ∂D ∈ C1, then

solution u (x) is continuous in D.

Lemma 2.2. Let relative to the coefficients of the operator L conditions (1.1), (1.2) be fulfilled. Then
any generalized solution of the equation Lu = 0 in D is continuous by Holder at each strictly internal
domain ∂.

Lemma 2.3. Let relative to the coefficients of the operator L, conditions (1.1), (1.2) be fulfilled and
εR,1 < D. Then for any positive solution u (x) of the equation Lu = 0 in D the Harnack inequality is
true

sup
εR,1(0)

u ≤ C1 (γ, α, n) inf
εR,1(0)

u (2.1)

If at this y ∈ ∂εR,2 (0) and εR,1 (0) ⊂ D, then the inequality of form (2.1) is true in ellipsoid εR,1 (y) .
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Lemma 2.4. Let relative to the coefficients of the operator L conditions (1.1), (1.2) be fulfilled, and
u (x) be generalized solution of the first boundary-value problem (1.4), (1.5) at f i (x) ≡ 0, i = 0, .., n.
Then if h (x) is bounded on ∂D in the sense ofW 1

2,α (D), then for solution u (x) the following maximum
principle is true

inf
∂D
h ≤ inf

D
u ≤ sup

∂D
h,

where inf
∂D
h

(
sup
∂D

h

)
is an exact lower (upper) bound of numbers a, for which h (x) ≥ a (h (x) ≤ a) on

∂D in the sense of W 1
2,α (D) .

These lemmas are proved as in paper [7].

Let H ⊂ ε be some compact, VH be a set of all functions ϕ (x) ∈
◦
W

1

2,α (ε), such that ϕ (x) ≥ 1

on H, in the sense of
◦
W

1

2,α (ε). Let’s consider the functional

Jθ (ϕ) =

∫
ε

n∑
i,j=1

aij (x)ϕiϕjdx, ϕ (x) ∈ VH

The value inf
ϕ∈VH

Jθ (u) is called L capacity of the compact H relative to ellipsoid ε and denoted by

cap
(ε)
L (H). In case ε = En, the corresponding value is called L capacity of the compact H and

denoted by capL (H).

Lemma 2.5. There exists the unique function u (x) ∈
◦
W

1

2,α (ε) such that u (x) ≥ 1 on H in the sense

of
◦
W

1

2,α (ε) and cap(ε)L (H) = JL (u). Moreover, u (x) = 1 on H in the sense of
◦
W

1

2,α (ε) .

Proof. It is easy to see that VH is convex closed set in
◦
W

1

2,α (ε). From the fact that
◦
W

1

2,α (ε) is
a Hilbert Space, it follows the existence of unique function u (x) ∈ VH , on which the functional JL (u)

achieved an exact lower bound. Let {u (x)}1 =

{
u (x) if u (x) ≤ 1
1 if u (x) > 1

It is clear, that {u (x)}1 ∈
◦
W

1

2,α (ε). Moreover, {u (x)}1 ∈ VH . Denote byA+ = {x : x ∈ ε, u (x) > 1}.
We have

JL
{
u (x)1

}
=

∫
A+

+

∫
ε\A+

 n∑
i,j=1

aij (x) {u}1i {u}
1
j dx =

∫
ε\A+

n∑
i,j=1

aij (x)uiujdx (2.2)

On the other side, according to (1.1) ∫
A+

n∑
i,j=1

aij (x)uiujdx ≥ 0 (2.3)

From (2.2) and (2.3) we conclude

JL
{
u (x)1

}
≤ JL (u) = inf

ϕ∈VH
JL (ϕ)

i.e., JL
{
u (x)1

}
= JL (u). From uniqueness of extreme function it follows, that {u (x)}1 = u (x), and

lemma is proved.
The function u (x),on which the functional JL (u) achieved its exact lower bound is called L

capacity potential of the compact H relative to the ellipsoid ε.
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Lemma 2.6. Let L be a capacity potential of u (x) of the compact H relative to ε. Then u (x) is a
generalized solution of the equation Lu = 0 in ε \H , tending to 0 on ∂ε and to 1 on ∂H in the
sense of W 1

2,α (ε).

Proof.It is sufficient to show the truthness of the first part of assertion of lemma. Let η (x) ∈
◦
W

1

2,α (ε) and η (x) ≥ 0 on H in the sense of
◦
W

1

2,α (ε). Then for any ε > 0 (u (x) + εη (x)) ∈ VH .
Therefore

JL (u+ εη) ≥ JL (u) .

Thus

JL (u) + ε2JL (η) + 2ε

∫
ε

n∑
i,j=1

aij (x)uiηjdx ≥ JL (u) ,

i.e.

JL (u) + 2ε

∫
ε

n∑
i,j=1

aij (x)uiηjdx ≥ 0.

Tending ε to zero, we conclude ∫
ε

n∑
i,j=1

aij (x)uiηjdx ≥ 0. (2.4)

It is easy to see as η (x) in (2.4) we can take any function from C1 (ε) with compact support in ε \H .
Then ∫

ε\H

n∑
i,j=1

aij (x)uiηjdx ≥ 0.

Substituting η (x) on -η (x), we get the equality∫
ε\H

n∑
i,j=1

aij (x)uiηjdx = 0

Lemma is proved.
Let µ be a charge of bounded variation, given on ε. We’ll say, that the function u (x) ∈ L1 (ε)

is a weak solution of the equation Lu = −µ, equaling to zero on ∂ε, if for any function ϕ (x) ∈
◦
W

1

2,α (ε) ∩ C (ε) the integral identity ∫
ε

uLϕdx =

∫
ε

ϕdµ.

is fulfilled.

According to lemma 2.1 (at h = 0) there exists the continuous linear operator H from
∗
W

1

2,α (ε) in
◦
W

1

2,α (ε), such that for any functional T ∈
∗
W

1

2,α (ε), the function u = H (T ) is an unique generalized

solution of the equation Lu = T in
◦
W

1

2,α (ε).
The operator H is called Green operator.

By lemma 2.1 this operator at p > p0 we transform
∗
W

1

2,α (ε) to C (ε). It is easy to see, that the
function u (x) is weak solution of the equation Lu = −µ, equaling to zero on ∂ε, iff for any function
ψ (x) ∈ C (ε) the integral identity ∫

ε

uψdx =

∫
ε

H (ψ) dµ. (2.5)
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is fulfilled.
By analogy with [8] we can show that for each measure µ on ε there exists the unique weak

solution of the equation Lu = −µ equaling to zero on ∂ε.

Let’s say, that the charge µ ∈
∗
W

1

2,α (ε) if there exists the vector f (x) =
(
f◦ (x) , f1 (x) , ..., fn (x)

)
f0 (x) ∈ h2 (ε) , f

i (x) ∈ L2,λi (ε) , i = 1, 2, .., n, for any function ϕ (x) ∈
◦
W

1

2,α (ε) ∩ C (ε) the integral
identity

µ (ϕ) =

∫
ε

ϕdµ =

∫
ε

(
f◦ϕ−

n∑
i=1

f iϕi

)
dx.

is true.
So, it is obvious that ∣∣∣∣∣∣

∫
ε

ϕdµ

∣∣∣∣∣∣ ≤ C2

(
f
)
‖ϕ‖W1

2,α(ε) .

Lemma 2.7. The weak solution u (x) of the equation Lu = −µ, equaling to zero on ∂ε, belongs to
◦
W

1

2,α (ε), iff µ ∈
∗
W

1

2,α (ε)

Proof. At first, we’ll show that if the function ϕ (x) ∈
◦
W

1

2,α (ε) satisfies the integral identity∫
ε

n∑
i,j=1

aij (x)uiϕjdx = −
∫
ε

ϕdµ (2.6)

for any function ϕ (x) ∈
◦
W

1

2,α (ε) ∩ C (ε), then it is weak solution of the equation Lu = −µ, equaling
to zero on ∂ε. Really, assuming ϕ = H (ψ), ψ (x) ∈ C (ε) we obtain∫

ε

H (ψ) dµ =

∫
ε

ϕdµ = −
∫
ε

n∑
i,j=1

aij (x)uiϕjdx

=

∫
ε

u

n∑
i,j=1

(aij (x)ϕj)i dx =

∫
ε

uLϕdx =

∫
ε

uψdx,

and now it is sufficient to use the identity (2.5). We’ll show that µ ∈
∗
W

1

2,α (ε). For this, it is sufficient to

prove, that if f i (x) =
n∑
i=1

aij (x)ui (x), then f i (x) ∈ L
2,λ−1

i
(ε) , i = 1, 2, .., n,. Assume in condition

(2.6) ξ1 = ... = ξi−1 = ξi+1 = ... = ξn = 0, ξi =
1√
λi (x)

.

We’ll obtain
γ ≤ aii (x)

λi (x)
≤ γ−1; i = 1, .., n. (2.7)

Let i 6= j. Assuming ξk = 0 at k 6= j and k 6= i, ξi =
1√
λi (x)

, ξj =
1√
λj (x)

, we’ll obtain

2γ ≤ aii (x)

λi (x)
+
ajj (x)

λj (x)
+

2aij (x)√
λi (x)λj (x)

≤ 2γ−1

Using (2.7), we conclude

|aij (x)|√
λi (x)λj (x)

≤ γ−1 − γ; i, j = 1, ..., n; i 6= j (2.8)
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From (2.7) and (2.8) it follows that

|aij (x)|√
λi (x)λj (x)

≤ γ−1; i, j = 1, ..., n; (2.9)

Thus, from (2.9) take out for j = 1, ..., n

∫
ε

1

λj (x)

(
f j
)2
dx =

∫
ε

1

λj (x)

(
n∑
i=1

aij (x)ui

)2

dx ≤ γ−2n

n∑
i=1

∫
ε

λi (x)u
2
i dx < α

So, µ ∈
∗
W

1

2,α (ε). And vice versa, if u (x) is a weak solution of the equation Lu = −µ, and u(x) = 0

on ∂ε, then there exists µ ∈
∗
W

1

2,α (ε), such that(
f◦ϕ−

n∑
i=1

f iϕi

)
dx =

∫
ε

ϕdµ =

∫
ε

uLϕdx

=

∫
ε

u

n∑
i,j=1

(aij (x)ϕj)i dx = −
∫
ε

n∑
i,j=1

aij (x)uiϕjdx

for any function ϕ (x) ∈
◦
W

1

2,α (ε) ∩ C (ε) , Lϕ (x) ∈ C (ε).

Then, from lemma 2.1 we obtain that u (x) ∈
◦
W

1

2,α (ε). The lemma is proved.
Let now δ (x) be Dirac measure, concentrated at the point 0, y is an arbitrary fixed point ε.
The weak solution g (x, y) of the equation Ly = −δ (x− y), such that g(x, y) = 0 on ∂ε is called

the Green function of the operator L in ε.
In case ε = En the corresponding function is called the fundamental solution of the operator L

and denoted by G (x, y).
According to above proved, if ψ (x) is an arbitrary function from C (ε), then the generalized

solution ϕ (x) ∈
◦
W

1

2,α (ε) of the equation Lϕ = −ψ can be introduced in the following from

ϕ (y) =

∫
ε

g (x, y)ψ (x) dx.

We can show, that g (x, y) is non-negative in ε× ε, moreover, g (x, y) = g (y, x).

Lemma 2.8. For any charge, of bounded variation on ε the integral

u (x) =

∫
ε

g (x, y) dµ (y)

exists, finite a.e. in ε and is weak solution of the equation Lu = −µ, equaling to zero on ∂ε.

Proof. Without losing generality, we’ll assume that the charge µ is the measure in ε. Let ϕ (x) ∈

C (ε) , ψ (x) ≥ 0 in ε. Denote by ϕ (x) ∈
◦
W

1

2,α (ε) the generalized solution of the equation Lϕ =
−ψ (x). Then ϕ (x) ∈ C (ε) according to lemma 2.1 and ψ (x) ≥ 0 according to lemma 2.4. So

ϕ (y) =

∫
ε

g (x, y)ψ (x) dx.
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Then, by Fubini theorem we conclude, that the integral
∫
ε

g (x, y) dµ (y) there exists for almost all

x ∈ ε, moreover∫
ε

H (ψ) dµ (y) =

∫
ε

ϕ (y) dµ (y) =

∫∫
ε×ε

g (x, y)ψ (x) dxdµ (y) =

∫
ε

ψ (x)u (x) dx. (2.10)

Let’s note, that the equality (2.10) is fulfilled for weak non-negative and continuous in ε function
ψ (x). Now, it is sufficient to remember the identity (2.5) and lemma is proved.

Let’s consider now L-capacity of the potential u (x) of the compact H relative to the ellipsoid ε.
It was proved above that u (x) satisfies the inequality (2.4) at any non-negative on H the function
η (x) ∈ C∞0 (ε). By the Schwartz theorem [9] there exists the measure µ on H such that∫

ε

n∑
i,j=1

aij (x)uiηjdx =

∫
ε

ηdµ. (2.11)

Further, since u = 1 on H in the sense of
◦
W

1

2,α (ε), then the carrier of the measure µ is located on
∂H. The measure µ is called L -capacity distribution of the compact H.

According to lemma 2.8 L-capacity potential u (x) is weak solution of the equation Lu = −µ,
equaling to zero on ∂ε and can be represented in the following form

u (x) =

∫
ε

g (x, z) dµ (z) (2.12)

On the other side, there exists the sequence of the functions
{
η(m) (x)

}
; m = 1, 2, ..., such that

η(m) (x) ∈ B (ε) , η(m) (x) = 1 for x ∈ H and

lim
m→∞

∥∥∥η(m) − u
∥∥∥
W1

2,α(ε)
= 0. Assuming in equality (2.5) η(m) (x) instead of η(m), we conclude

that the right-hand side is equal to µ (H) at any natural m, while the left-hand side tends to cap(ε)L (H)
as m→∞. Thus,

cap
(ε)
L (H) = µ (H) (2.13)

Lemma 2.9. Let relative to coefficients of the operator L conditions (1.1)-(1.2), y ∈ ∂εR,2 (0) ,
εR,1 (0) ⊂ D, x ∈ ∂εR,1 (y) be fulfilled. Then for the Green function g (x, y) the following estimations
are true

C3 (γ, α, n)
[
cap

(ε)
L (εR,1 (y))

]−1

≤ g (x, y) ≤ C4 (γ, α, n)
[
cap

(ε)
L (εR,1 (y))

]−1

(2.14)

If εR,1 (0) ⊂ D, x ∈ ∂εR,1 (0) then

C3

[
cap

(ε)
L (εR,1 (0))

]−1

≤ g (x, 0) ≤ C4

[
cap

(ε)
L (εR,1 (0))

]−1

(2.15)

Proof. Without loss of generality, we can assume that the coefficients of the operator L are
continuously differentiable in ε. The general case is obtained by means of limit passage. Then at
x 6= y the function g (x, y) is continuous by x and y, moreover

lim
x→y

g (x, y) =∞) (2.16)

Let a be a positive number, which will be chosen later, Ka = {x : g (x, y) ≥ a}, where y is an
arbitrary fixed point on ∂εR,2 (0). From (2.16) it follows that y is an internal point of the compact Ka.
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Then L is a capacity potential Ka, represented in form (2.12). So it means, it is equal to zero there.
Thus,

1 =

∫
ε

y (y, z) dµa (z)

where µ is a L-capacity distribution of the compact Ka. Let the carrier of the measure µa is located
on ∂Ka, where g (y, z) = a. Then using (18), we obtain

µa (Ka) = cap
(ε)
L (Ka) =

1

a
(2.17)

Let’s assume now, a = inf
x∈∂εR,1(y)

g (x, y). According to maximum principle εR,1 (y) ⊂ Ka. Therefore

from (2.17) we conclude

cap
(ε)
L (εR,1 (y)) ≤ cap(ε)L (Ka) =

1

inf
x∈∂εR,1(y)

g (x, y)
(2.18)

If we assume b = sup
x∈∂εR,1(y)

g (x, y), then εR,1 (y) ⊂ Ka, i.e.,

cap
(ε)
L (εR,1 (y)) ≤ cap(ε)L (Kb) =

1

sup
x∈∂εR,1(y)

g (x, y)
(2.19)

From (2.18) and (2.19) follows that

inf
x∈∂εR,1(y)

g (x, y) ≤
[
cap

(ε)
L (εR,1 (y))

]−1

≤ sup
x∈∂εR,1(y)

g (x, y) (2.20)

On the other side, according to lemma 2.3

sup
x∈∂εR,1(y)

g (x, y) ≤ C5 (γ, α, n) inf
x∈∂εR,1(y)

g (x, y) (2.21)

Now, the required estimations (2.14) follows from (2.20) and (2.21). Absolutely analogously the
truthness of inequality (2.15) is proved.

Corollary 2.10. . Let the conditions of the lemma, and y ∈ ∂εR,2 (0) be fulfilled, εR,1 (0) ⊂ D,
x ∈ ∂εR,1 (0) or y = 0, εR,1 (0) ⊂ D, x ∈ ∂εR,1 (0). Then for the fundamental solution G (x, y) the
estimations

C3

[
cap

(ε)
L (εR,1 (0))

]−1

≤ G (x, y) ≤ C4

[
cap

(ε)
L (εR,1 (0))

]−1

(2.22)

are true.

3 REMOVABILITY CRITERION OF THE COMPACT IN THE
SPACE M (D)

Theorem 3.1. Let relative to the coefficients of the operator L, conditions (1.1)-(1.2) be fulfilled. Then
for removability of the compact E ⊂ D relative to the first boundary value problem for the operator L
in the spaceM (D) it is necessary and sufficient, that

capL (E) = 0 (3.1)
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Proof. Let the ellipsoid ε has the same sense, that above. It is easy to see that if condition (3.1)
is fulfilled, then

cap
(ε)
L (E) = 0

Without loss of generality, we can consider the case, when the coefficients of the operator L is
continuously differentiable in ε. Let’s fix an arbitrary ε > 0 and x0 ⊂ D \E . By virtue of (3.1)
there exists the neighbourhood H of the compact E, such that

cap
(ε)
L

(
H
)
< ε (3.2)

So, we can assume that ε is such small, that

dist
(
x0, H

)
≥ 1

2
dist

(
x0, E

)
(3.3)

Denote by VH (x) and µH the L-capacity potential of the compact H relative to the ellipsoid ε and
L-capacity of the distribution H, respectively. According to above proved

VH (x) =

∫
ε

g (x, y) dµH (y) ,

moreover the function VH (x) is a generalized solution of the equation LVH = 0 in ε
∖
H , which is

equal to 0 on ∂ε and equal to 1 on ∂H in the sense of W 1
2,α (ε). Let now, u (x) ∈ M (D) is an

arbitrary solution of the equation Lu = 0 in D \E , such that u(x) = 0 on ∂D. Let M = sup
D
|u|. It

is easy to see, that the function VH (x) is non-negative on ∂D, in the sense of W 1
2,α (D). Hence, it

follows, that the function u (x) −MVH (x) is non-positive on ∂
(
D
∖
H
)

generalized solution of the
equation Lu = 0 in D

∖
H . According to lemma 2.4 u (x)−MVH (x) ≤ 0 and D

∖
H in particular

u
(
x0
)
≤MVH

(
x0
)
≤M sup

y∈∂H
g
(
x0, y

)
µH
(
H
)
=M sup

y∈∂H
g
(
x0, y

)
cap

(ε)
L

(
H
)

(3.4)

By virtue of continuity of the function g (x, y) at x 6= y and inequality (3.3) we obtain

sup
y∈∂H

g
(
x0, y

)
≤ C6

(
γ, α, n, x0, E

)
Thus, from (3.2) and (3.5) we conclude

u
(
x0
)
≤MC6ε (3.5)

Using an arbitrary ε, we get the inequality

u
(
x0
)
≤ 0 (3.6)

Making similar considerations with the function u (x) +MVH (x), we obtain

u
(
x0
)
≥ 0 (3.7)

From (3.5)-(3.6) and an arbitrariness of the point x0 it follows, that u (x) ≡ 0 in D \E . Thereby,
the sufficiency of condition (3.1) is proved. Let’s prove its necessity. Let’s assume that capL (E) >
0. Denote by ε′ the ellipsoid, such that ε′ ⊂ δ, E ⊂ ε′. Assume D = ε. Further, let uE (x) be
VE-L capacity potential of the compact E relative to the ellipsoid ε′ and L-capacity distribution E,
respectively. Following to [10], we can give the equivalent definition of Vallee-Poussin type of L-
capacity of the compact E, relative to the ellipsoid ε′. Let g (x, y) be a Green function of the operator
L in ε′. Let’s call the measure µ on E, L-admissible, if µ ⊂ E and

V Eµ (x) =

∫
ε′

g (x, y) dµ (y) ≤ 1 for x ∈ sup pµ (3.8)
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The value supµ (E) = cap
(ε′)
L (E), where an exact upper boundary is taken on all L-admissible

measures, is called L-capacity of the compact E, relative to the ellipsoid ε′.
Analogously, the L-capacity capL (E) is determined. At this by the standard method we show,

that there exists the unique measure, on which an exact upper boundary of the functional µ (E) is
reached, by the set of all L-admissible measures µ. This measure is L-capacity distribution of the
compact E.

According to the above proved, the function uE (x) is generalized solution of the equation LuE =
0 in ε′ \E , equaling to zero on ∂ε′. Besides, from (3.7) and maximum principle it follows that uE (x) ∈
M (ε′). On the other side uE (x) 6≡ 0, as VH (E) > 0. Theorem is proved.

Lemma 3.2. Let relative to the coefficients of the operator L condition (1.1) be fulfilled. Then, if
y ∈ ∂εR,2 (0), then C7 (γ, α, n)R

n+
〈α〉
2
−2 ≤ capL (εR,1 (y)) ≤ C8 (γ, α, n)R

n+
〈α〉
2
−2

Proof. Let L0 =
n∑
i=1

∂

∂xi

(
λi (x)

∂

∂xi

)
. Then, according to (1.1)

γcapL0 (εR,1 (y)) ≤ capL (εR,1 (y)) ≤ γ−1capL0 (εR,1 (y)) . (3.9)

Let u (x) ∈ C∞0
(
εR, 3

2
(y)
)
, u (x) = 1 for εR,1 (y), moreover

|ui (x)| ≤
C9 (λ, n)

R1+
αi
2

; i = 1, .., n (3.10)

Then

capL0 (εR,1 (y)) ≤
∫

ε
R, 3

2
(y)

n∑
i=1

λi (x)u
2
i dx. (3.11)

On the other side, as y ∈ ∂εR,2 (0), then
n∑
i=1

y2i
Rαi

= 4R2 and thereby

|yi| ≤ 2R1+
αi
2 ; i = 1, ..., n.

Besides, as x ∈ εR, 3
2
(y), then

|xi − yi| ≤
3

2
R1+

αi
2 ; i = 1, ..., n.

Thus
|xi| ≤ |yi|+ |xi − yi| ≤

7

2
R1+

αi
2 ; i = 1, ..., n.

Hence, it follows that

|x|α ≤ R
n∑
i=1

(z
2

) 2
2+λi

Therefore
λi (x) ≤ Cαi10R

αi ≤ Cα
+

10 R
αi ; i = 1, ..., n. (3.12)

where α+ = max {α1, ..., αn}.
Using (3.10) and (3.12) in (3.11) we obtain

capL0 (εR,1 (y)) ≤ C10 (α, n)R
−2mes

(
εR, 3

2
(y)
)
= C11 (α, n)R

n+
〈α〉
2
−2

and by virtue of (3.9), the upper estimation of (3.8) is proved.
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For truthness of lower estimation of (3.8), we note that

capL0 (εR,1 (y)) ≥ capL0

(
εR, 1

2
√
n
(y)
)

(3.13)

Besides, considering the same as in [8], we conclude

capL0

(
εR, 1

2
√
n
(y)
)
≥ C12 (α, n) cap

(ε0)
L0

(
εR, 1

2
√
n
(y)
)

(3.14)

where ε0 = εR, 1√
n
(y).

Let W =
{
u (x) : u (x)C∞0 (ε0) , u (x) = 1 for x ∈ εR, 1

2
√
n
(y)
}

. Then

cap
(ε0)
L0

(
εR, 1

2
√
n
(y)
)
= inf
u∈W

∫
ε0

n∑
i=1

λi (x)u
2
i dx. (3.15)

On the other side, if y ∈ ∂εR,2 (0), then we can find i0, 1 ≤ i0 ≤ n, such that y2i0 ≥
4R

2+αi0

n
, i.e.,

|yi0 | ≥
4R1+

αi0
2

√
n

Besides, as x ∈ ε0, then

|xi0 − yi0 | ≤
R1+

αi0
2

√
n

Therefore

|xi0 | ≥ |yi0 | − |xi0 − yi0 | ≥
R1+

αi0
2

√
n

Thereby

λi (x) ≥ n
− 1

2+αi0 R; i = 1, ..., n. (3.16)

where α− = min {α1, ..., αn}.
Using (3.16) in (3.15) we obtain

cap
(ε0)
L0

(
εR, 1

2
√
n
(y)
)
= C13 (α, n) inf

u∈W

∫
ε0

n∑
i=1

Rαiu2
i dx. (3.17)

Denote by BR (z) the ball {x : |x− z| < R}. Let’s substitute the variables vi = xi

R
1+

αi
2

; i = 1, ..., n in

(3.17) and let ỹ is an image of the point y, where W̃ =
{
ũ (v) : ũ (τ)C∞0 (B0) , ũ (τ) = 1 for v ∈ B 1

2
√
n
(ỹ)
}

.

Then from (3.17) we deduce B0 = B 1
2
√
n
(ỹ) where by (3.17)

cap
(ε0)
L0

(
εR, 1

2
√
n
(y)
)
≥ C13R

n+
〈α〉
2
−2 inf

ũ∈W̃

∫
B0

n∑
i=1

(
∂ũ

∂vi

)2

dτ

= C13R
n+
〈α〉
2
−2cap(B0)

(
B 1

2
√
n
(ỹ)
)
,

we’ll denote by cap(B0)
(
B 1

2
√
n
(ỹ)
)

the Wiener capacity of the compact B 1
2
√
n
(ỹ), relative to the ball

B0. Now, it is sufficient to note that cap(B0)
(
B 1

2
√
n
(ỹ)
)

= C14 (n) and required estimation follow

from (3.13), (3.14) and (3.18). Lemma is proved.
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Lemma 3.3. Let relative to the coefficients of the operator L condition (1.1) be fulfilled. Then

C15 (γ, α, n)R
n+
〈α〉
2
−2 ≤ capL (εR,1 (y)) ≤ C16 (γ, α, n)R

n+
〈α〉
2
−2 (3.18)

Upper estimation in (3.19) is proved analogously to the estimation in (3.8). For proof of the lower
estimation, it is sufficient to note that εR, 1

4
(y) ⊂ εR,1 (0), i.e. where

capL
(
εR, 1

4
(y)
)
< capL (εR,1 (0)) (3.19)

where y =

(
1

2
R1+α

2 , 0, ..., 0

)
and repeat the proof of the previous lemma.

Corollary 3.4. If conditions (1.1)-(1.2) y ∈ ∂εR,2 (0) are fulfilled, then for any ρ ∈ (0, R] the estimation

capL (ερ,1 (y)) ≤ C17 (γ, α, n) ρ
n+
〈α〉
2
−2

(
1 +

n∑
i=1

(
R

ρ

)αi)
. (3.20)

is true.
Then v (x) ∈ C∞0

(
ερ, 3

2
(y)
)
, v (x) = 1 for x ∈ ερ,1 (y)

|vi (x)| ≤
C18 (α, n)

ρ1+
αi
2

; i = 1, ..., n

capL0 (ερ,1 (y)) = γ−1C2
18ρ
−2

∫
ε
ρ, 3

2
(y)

n∑
i=1

λi (x) ρ
−αidx. (3.21)

On the other side, assuming the same, as well as in the proof of lemma 3.2 we obtain the
inequality

λi (x) < C19 (α, n) (R+ ρ)αi , x ∈ ερ, 3
2
(y) ; i = 1, ..., n. (3.22)

Now, it is sufficient to take into account that

n∑
i=1

(
1 +

R

ρ

)αi
≤

n∑
i=1

[
1 +

(
R

ρ

)αi]
≤ n

(
1 +

n∑
i=1

(
R

ρ

)αi)
,

and from (3.21)-(3.22) the required estimation (3.20) follows.

Corollary 3.5. If conditions (1.1)-(1.2) y 6= 0, are fulfilled, then at x ∈ εd|y|d,1 (y), x 6= y for the
fundamental solution G (x, y) the estimation

G (x, y) ≥ C20 (γ, α, n)

(
|x− y|α

)2−n− 〈α〉
2

1 +
n∑
i=1

(
|y|α
|x− y|α

)αi (3.23)

is true.

If y = 0, then estimation (3.23) is true for all x 6= 0. Here d = 1

n2
2

2+α
.

For proof, at first let’s show, that if y 6= 0, then y /∈ εd|y|d,2 (0). Really, as

|y|α =
n∑
i=1

|yi|
2

2+αi (3.24)
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then there exists i0, 1 ≤ i0 ≤ n, such that

|y0|
2

2+αi0 ≥
|y|α
n
.

Thus ∣∣y2i0 ∣∣(
|y|α

)αi0 ≥
(
|y|α

)2
n2+αi

.

There by
n∑
i=1

y2i(
d |y|α

)αi ≥ y2i0(
d |y|α

)αi0 ≥
(
d |y|α

)2
(dn)2+αi0

=
4
(
d |y|α

)2(
2

2
2+αi0 dn

)2+αi0
Now, it is sufficient to note that 2

2
2+αi0 dn ≤ 2

2
2+α dn = 1 and the required assertion is proved. On the

other side from (3.24) it follows that for all i, 1 ≤ i ≤ n

|yi|
2

2+αi ≤ |y|α ,

i.e.
n∑
i=1

y2i(
|y|α

)αi ≤ n (|y|α)2 .
So, we’ll show that ε|y|α,√n (0), if only y 6= 0.

Let now, for y 6= 0, x ∈ εd|y|d,1 (y) and x 6= y. Denote by |x− y|α the ρ. It is easy to see that
there exists i1, 1 ≤ i1 ≤ n, such that

|xi1 − yi1 |
2

2+αi1 ≥ ρ

n

Hence , it follows that

n∑
i=1

(xi − yi)2

ραi
≥ (xi1 − yi1)

2

ρα1
≥ ρ2

n2+αi1
≥ ρ2

n2+α
.

Thus x /∈ ερ;d1 (y), where d1 =
1

n1+α
2

.Analogously, it is proved that x ∈ ερ,√n (y). Now, the required

estimation (3.23) at y 6= 0 follows from (2.22) and corollary 3.4 from lemma 3.2. If y = 0, then (3.23),
it immediately follows from (2.22) and lemma 2.7.

Let F (x, y) be a positive function, determined in En × En, continuous at x 6= y, moreover
lim
x→y

F (x, y) =∞ (condition (A)).

Further, let E ⊂ En be some compact. Let’s call the measure µ on E [F ] admissible, if sup pµ ⊂
E and V Eµ (x) =

∫
E

F (x, y) dµ (y) ≤ 1, for x ∈ sup pµ.

The value supµ (E) = cap[F ] (E), where an exact upper boundary is taken by all [F ] admissible
measures, is called [F ]-capacity of the compact E.

Theorem 3.6. Let relative to the coefficients of the operator L conditions (1.1)-(1.2) be fulfilled. Then
for removability of the compact E ⊂ D relative to the first boundary-value problem for the operator L
in the spaceM (D) it is sufficient that

cap[F1] (E) = 0 (3.25)

where F1 (x, y) =

[
1 +

n∑
i=1

(
|y|α
|x− y|α

)αi]−1 (
|x− y|α

)2−n− 〈α〉
2 .

177



British Journal of Mathematics and Computer Science 3(2), 164-179, 2013

Proof. We’ll use the following assertion, which is proved in [10]. Let function F (x, y) satisfies
condition (A), the compact E has zero [F ]-capacity, µ zero measure concentrated on E. Then, there
exists the point x◦ ∈ sup pµ, such that V Eµ (x◦) = ∞. So, the potential of the measure sup pµ can’t
be bounded on any portion B, i.e., for any open set B at E′ ∈ sup pµ∩B, the potential V E

′
µ (x) is not

bound B. In particular, if B is an arbitrary neighbourhood of the point x◦ that V E
′

µ (x◦) =∞.
Let the condition (3.25) be fulfilled, µ be an arbitrary measure, concentrated on E, x◦ ∈ sup pµ

is a point, corresponding to the above-stated assertion at F = F1. Let’s assume at first, that x◦ 6= 0.
Then |x◦|α = v > 0. Further, letB be such small neighborhood of the point x◦, that if E′ ∈ sup pµ∩B,
then

sup
y∈E′

|y|α ≤ (1 + ε) r, inf
y∈E′

|y|α ≥ (1 + ε) r,

where the number ε > 0 will be chosen later. Let’s consider the ellipsoids εd|y|d,1 (y) at y ∈ E′. Let’s
choose ε such small, than x0 ∈ εd|y|d,1 (y) for all y ∈ E′. Then according to corollary 3.5 from lemma
2.7 we obtain

V Eµ
(
x0
)
=

∫
E

G
(
x0, y

)
dµ (y) ≥

∫
E′

G
(
x0, y

)
dµ (y) ≥

≥ C20

∫
E

F1

(
x0, y

)
dµ (y) = C20V

E
µ

(
x0
)
=∞.

Hence, it follows that any zero measure µ, concentrated on E can’t be L admissible. Thus capL (E) =
0 and the required assertion follows from theorem 3.1.

Let now x◦ = 0. Then, using the equality G (x, y) = G (y, x) and corollary 3.4 from lemma 2.7
we conclude

V Eµ (0) =

∫
E

G (0, y) dµ (y) =

∫
E

G (y, 0) dµ (y) ≥ C20

∫
E

F1 (y, 0) dµ (y)

= C20

∫
E

F1 (0, y) dµ (y) = C20V
E
µ (0) =∞.

Theorem is proved.
Remark. Let condition of the real theorem be fulfilled, and the compact E ⊂ D be removable

relative to the first boundary-value problem for the operator L in the spaceM (D). Thenmes (E) = 0.
At first, let’s note that the discussion of the proof is the same. As in conclusion of estimation

(3.23), we can show that at x ∈ εd|y|d,1 (y) , x 6= y (y 6= 0) and at x 6= y (y = 0) the estimations

G (x, y) ≤ C21 (γ, α, n)
(
|x− y|d

)2−n− 〈α〉
2 (3.26)

is true.
As it was shown in theorem 3.6, if the compactE is a removable, then according to cap[−F2] (E) =

0, where F2 (x, y) =
(
|x− y|d

)2−n− 〈α〉
2 .

Hence, it follows that if mes (E) > 0, then there exists the point x2 ∈ E, such that V E
(
x1
)
=∞,

where
V E (x) =

∫
E

F2 (x, y) dy

Moreover, if B′ is an arbitrary neighborhood of the point E′ = B′ ∩ E, then the potential V E
′
(x) is

not bounded on E′. Let’s consider the case x′ 6= 0. Choose a small neighbourhood B′ of the point
x1, that at all x ∈ E′, y ∈ E′ the inequality |xi − yi| ≤ 1; i = 1, ..., n is fulfilled. For x ∈ E′ we have

V E
′
(x) =

∫
E′

(
n∑
i=1

|xi − yi|
2

2+αi

)2−n− 〈α〉
2

dy ≤
∫
E′

(
n∑
i=1

|xi − yi|

)2−n− 〈α〉
2

dy ≤
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≤
∫
E′

|x− y|2−n−
〈α〉
2 dy ≤

∫
B′′

|z|2−n−
〈α〉
2 dy,

where B′′ is a ball of the radius
√
n with the center origin of the coordinate. Now, it is sufficient to

note that according to condition (1.2)
〈α〉
2
≤ n

n− 1
≤ 3

2
and the assertion the corollary is proved.
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